Loading…

Defect engineering on constructing surface active sites in catalysts for environment and energy applications

The precise engineering of surface active sites is deemed as an efficient protocol for regulating surfaces and catalytic properties of catalysts. Defect engineering is the most feasible option to modulate the surface active sites of catalysts. Creating specific active sites on the catalyst allows pr...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers of chemical science and engineering 2024-07, Vol.18 (7), Article 74
Main Authors: Cai, Yawen, Hu, Baowei, Wang, Xiangke
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The precise engineering of surface active sites is deemed as an efficient protocol for regulating surfaces and catalytic properties of catalysts. Defect engineering is the most feasible option to modulate the surface active sites of catalysts. Creating specific active sites on the catalyst allows precise modulation of its electronic structure and physicochemical characteristics. Here, we outlined the engineering of several types of defects, including vacancy defects, void defects, dopant-related defects, and defect-based single atomic sites. An overview of progress in fabricating structural defects on catalysts via de novo synthesis or post-synthetic modification was provided. Then, the applications of the well-designed defective catalysts in energy conversion and environmental remediation were carefully elucidated. Finally, current challenges in the precise construction of active defect sites on the catalyst and future perspectives for the development directions of precisely controlled synthesis of defective catalysts were also proposed.
ISSN:2095-0179
2095-0187
DOI:10.1007/s11705-024-2427-z