Loading…

Electro‐induced Crystallization Over Amorphous Indium Hydroxide Gels Toward Ampere‐Level Current Density Formate Electrosynthesis

Electrochemical CO2 reduction reaction (CO2RR) provides a promising way for producing value‐added fuels and chemicals via renewable electricity. However, the dynamic reconstruction of electrocatalysts of atomic active sites hinders in‐depth understanding of catalytic mechanism and further industrial...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2024-06, Vol.34 (24), p.n/a
Main Authors: Zhao, Jia Yue, Huang, Kai, Liu, Changwei, Wu, Xuefeng, Xu, Yi Ning, Li, Jiayu, Zhu, Minghui, Dai, Sheng, Lian, Cheng, Liu, Peng Fei, Yang, Hua Gui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2727-90cdb2d7f35601b5c9472df2613117abde54b6d43e6478ada7005f195833fc0b3
container_end_page n/a
container_issue 24
container_start_page
container_title Advanced functional materials
container_volume 34
creator Zhao, Jia Yue
Huang, Kai
Liu, Changwei
Wu, Xuefeng
Xu, Yi Ning
Li, Jiayu
Zhu, Minghui
Dai, Sheng
Lian, Cheng
Liu, Peng Fei
Yang, Hua Gui
description Electrochemical CO2 reduction reaction (CO2RR) provides a promising way for producing value‐added fuels and chemicals via renewable electricity. However, the dynamic reconstruction of electrocatalysts of atomic active sites hinders in‐depth understanding of catalytic mechanism and further industrial application, especially under ampere‐level current density conditions. In this work, electro‐induced crystallization is reported over an amorphous Indium hydroxide gel (In gel) catalyst, which generates active sites for efficient and selective CO2RR. Molecular dynamic calculation reveals the crystallization process can maintain amorphous In‐OH species on the surface while generating crystallized metallic In under electroreduction condition; structural characterizations prove that the derived partially crystallized In gel is stable consisting of amorphous/crystalline interface, even biased at a high polarization potential of −4 V versus reversible hydrogen electrode. The resultant partially crystalized In gel exhibits a highly selective CO2RR performance toward formate under an ampere‐level current density up to 1200 mA cm−2 simultaneously with 91.89% Faradaic efficiency, which can motivate a high formate generation rate of 20.55 mmol h−1 cm−2. The operando Raman spectroscopic and density functional theoretic results demonstrate the optimized adsorption of *HCOO intermediate for the enhanced formate activity and selectivity over the partially crystallized In gel. A stable amorphous/crystalline structure of In(OH)3/In interface is reconstructed from an amorphous In‐based hydroxide gel through an electro‐induced crystallization process, which can deliver a high selectivity toward formate of over 90% under a current density of over 1.0 A cm−2 in a flow cell reactor.
doi_str_mv 10.1002/adfm.202316167
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3066621331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066621331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2727-90cdb2d7f35601b5c9472df2613117abde54b6d43e6478ada7005f195833fc0b3</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhSMEEqWwMltibvEjsZuxSp9SUZcisUVOfKO6SuJgJy1hYmHnN_JLSNUKRqZzh--cc3U8757gIcGYPkqVFUOKKSOccHHh9Y46YJiOLn9v8nLt3Ti3w5gIwfye9znNIa2t-f740qVqUlAosq2rZZ7rd1lrU6L1HiwaF8ZWW9M4tCyVbgq0aJU1b1oBmkPu0MYcpFUdVoGFLmwFe8hR1FgLZY0mUDpdt2hmbCFrQOdS15b1Fpx2t95VJnMHd2fte8-z6SZaDFbr-TIarwYpFVQMQpyqhCqRsYBjkgRp6AuqMsoJI0TIREHgJ1z5DLgvRlJJgXGQkTAYMZalOGF97-GUW1nz2oCr451pbNlVxgxzzilhjHTU8ESl3YvOQhZXVhfStjHB8XHq-Dh1_Dt1ZwhPhoPOof2HjseT2dOf9wc7cYc3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066621331</pqid></control><display><type>article</type><title>Electro‐induced Crystallization Over Amorphous Indium Hydroxide Gels Toward Ampere‐Level Current Density Formate Electrosynthesis</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Zhao, Jia Yue ; Huang, Kai ; Liu, Changwei ; Wu, Xuefeng ; Xu, Yi Ning ; Li, Jiayu ; Zhu, Minghui ; Dai, Sheng ; Lian, Cheng ; Liu, Peng Fei ; Yang, Hua Gui</creator><creatorcontrib>Zhao, Jia Yue ; Huang, Kai ; Liu, Changwei ; Wu, Xuefeng ; Xu, Yi Ning ; Li, Jiayu ; Zhu, Minghui ; Dai, Sheng ; Lian, Cheng ; Liu, Peng Fei ; Yang, Hua Gui</creatorcontrib><description>Electrochemical CO2 reduction reaction (CO2RR) provides a promising way for producing value‐added fuels and chemicals via renewable electricity. However, the dynamic reconstruction of electrocatalysts of atomic active sites hinders in‐depth understanding of catalytic mechanism and further industrial application, especially under ampere‐level current density conditions. In this work, electro‐induced crystallization is reported over an amorphous Indium hydroxide gel (In gel) catalyst, which generates active sites for efficient and selective CO2RR. Molecular dynamic calculation reveals the crystallization process can maintain amorphous In‐OH species on the surface while generating crystallized metallic In under electroreduction condition; structural characterizations prove that the derived partially crystallized In gel is stable consisting of amorphous/crystalline interface, even biased at a high polarization potential of −4 V versus reversible hydrogen electrode. The resultant partially crystalized In gel exhibits a highly selective CO2RR performance toward formate under an ampere‐level current density up to 1200 mA cm−2 simultaneously with 91.89% Faradaic efficiency, which can motivate a high formate generation rate of 20.55 mmol h−1 cm−2. The operando Raman spectroscopic and density functional theoretic results demonstrate the optimized adsorption of *HCOO intermediate for the enhanced formate activity and selectivity over the partially crystallized In gel. A stable amorphous/crystalline structure of In(OH)3/In interface is reconstructed from an amorphous In‐based hydroxide gel through an electro‐induced crystallization process, which can deliver a high selectivity toward formate of over 90% under a current density of over 1.0 A cm−2 in a flow cell reactor.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202316167</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>amorphous Indium hydroxide gels ; ampere‐level ; Chemical reduction ; Crystallization ; Current density ; Electrocatalysts ; electro‐induced crystallization ; formate ; Gels ; Indium ; Industrial applications ; molecular dynamic calculation ; Molecular dynamics</subject><ispartof>Advanced functional materials, 2024-06, Vol.34 (24), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2727-90cdb2d7f35601b5c9472df2613117abde54b6d43e6478ada7005f195833fc0b3</cites><orcidid>0000-0003-0436-8622</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhao, Jia Yue</creatorcontrib><creatorcontrib>Huang, Kai</creatorcontrib><creatorcontrib>Liu, Changwei</creatorcontrib><creatorcontrib>Wu, Xuefeng</creatorcontrib><creatorcontrib>Xu, Yi Ning</creatorcontrib><creatorcontrib>Li, Jiayu</creatorcontrib><creatorcontrib>Zhu, Minghui</creatorcontrib><creatorcontrib>Dai, Sheng</creatorcontrib><creatorcontrib>Lian, Cheng</creatorcontrib><creatorcontrib>Liu, Peng Fei</creatorcontrib><creatorcontrib>Yang, Hua Gui</creatorcontrib><title>Electro‐induced Crystallization Over Amorphous Indium Hydroxide Gels Toward Ampere‐Level Current Density Formate Electrosynthesis</title><title>Advanced functional materials</title><description>Electrochemical CO2 reduction reaction (CO2RR) provides a promising way for producing value‐added fuels and chemicals via renewable electricity. However, the dynamic reconstruction of electrocatalysts of atomic active sites hinders in‐depth understanding of catalytic mechanism and further industrial application, especially under ampere‐level current density conditions. In this work, electro‐induced crystallization is reported over an amorphous Indium hydroxide gel (In gel) catalyst, which generates active sites for efficient and selective CO2RR. Molecular dynamic calculation reveals the crystallization process can maintain amorphous In‐OH species on the surface while generating crystallized metallic In under electroreduction condition; structural characterizations prove that the derived partially crystallized In gel is stable consisting of amorphous/crystalline interface, even biased at a high polarization potential of −4 V versus reversible hydrogen electrode. The resultant partially crystalized In gel exhibits a highly selective CO2RR performance toward formate under an ampere‐level current density up to 1200 mA cm−2 simultaneously with 91.89% Faradaic efficiency, which can motivate a high formate generation rate of 20.55 mmol h−1 cm−2. The operando Raman spectroscopic and density functional theoretic results demonstrate the optimized adsorption of *HCOO intermediate for the enhanced formate activity and selectivity over the partially crystallized In gel. A stable amorphous/crystalline structure of In(OH)3/In interface is reconstructed from an amorphous In‐based hydroxide gel through an electro‐induced crystallization process, which can deliver a high selectivity toward formate of over 90% under a current density of over 1.0 A cm−2 in a flow cell reactor.</description><subject>amorphous Indium hydroxide gels</subject><subject>ampere‐level</subject><subject>Chemical reduction</subject><subject>Crystallization</subject><subject>Current density</subject><subject>Electrocatalysts</subject><subject>electro‐induced crystallization</subject><subject>formate</subject><subject>Gels</subject><subject>Indium</subject><subject>Industrial applications</subject><subject>molecular dynamic calculation</subject><subject>Molecular dynamics</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAUhSMEEqWwMltibvEjsZuxSp9SUZcisUVOfKO6SuJgJy1hYmHnN_JLSNUKRqZzh--cc3U8757gIcGYPkqVFUOKKSOccHHh9Y46YJiOLn9v8nLt3Ti3w5gIwfye9znNIa2t-f740qVqUlAosq2rZZ7rd1lrU6L1HiwaF8ZWW9M4tCyVbgq0aJU1b1oBmkPu0MYcpFUdVoGFLmwFe8hR1FgLZY0mUDpdt2hmbCFrQOdS15b1Fpx2t95VJnMHd2fte8-z6SZaDFbr-TIarwYpFVQMQpyqhCqRsYBjkgRp6AuqMsoJI0TIREHgJ1z5DLgvRlJJgXGQkTAYMZalOGF97-GUW1nz2oCr451pbNlVxgxzzilhjHTU8ESl3YvOQhZXVhfStjHB8XHq-Dh1_Dt1ZwhPhoPOof2HjseT2dOf9wc7cYc3</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Zhao, Jia Yue</creator><creator>Huang, Kai</creator><creator>Liu, Changwei</creator><creator>Wu, Xuefeng</creator><creator>Xu, Yi Ning</creator><creator>Li, Jiayu</creator><creator>Zhu, Minghui</creator><creator>Dai, Sheng</creator><creator>Lian, Cheng</creator><creator>Liu, Peng Fei</creator><creator>Yang, Hua Gui</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0436-8622</orcidid></search><sort><creationdate>20240601</creationdate><title>Electro‐induced Crystallization Over Amorphous Indium Hydroxide Gels Toward Ampere‐Level Current Density Formate Electrosynthesis</title><author>Zhao, Jia Yue ; Huang, Kai ; Liu, Changwei ; Wu, Xuefeng ; Xu, Yi Ning ; Li, Jiayu ; Zhu, Minghui ; Dai, Sheng ; Lian, Cheng ; Liu, Peng Fei ; Yang, Hua Gui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2727-90cdb2d7f35601b5c9472df2613117abde54b6d43e6478ada7005f195833fc0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>amorphous Indium hydroxide gels</topic><topic>ampere‐level</topic><topic>Chemical reduction</topic><topic>Crystallization</topic><topic>Current density</topic><topic>Electrocatalysts</topic><topic>electro‐induced crystallization</topic><topic>formate</topic><topic>Gels</topic><topic>Indium</topic><topic>Industrial applications</topic><topic>molecular dynamic calculation</topic><topic>Molecular dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Jia Yue</creatorcontrib><creatorcontrib>Huang, Kai</creatorcontrib><creatorcontrib>Liu, Changwei</creatorcontrib><creatorcontrib>Wu, Xuefeng</creatorcontrib><creatorcontrib>Xu, Yi Ning</creatorcontrib><creatorcontrib>Li, Jiayu</creatorcontrib><creatorcontrib>Zhu, Minghui</creatorcontrib><creatorcontrib>Dai, Sheng</creatorcontrib><creatorcontrib>Lian, Cheng</creatorcontrib><creatorcontrib>Liu, Peng Fei</creatorcontrib><creatorcontrib>Yang, Hua Gui</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Jia Yue</au><au>Huang, Kai</au><au>Liu, Changwei</au><au>Wu, Xuefeng</au><au>Xu, Yi Ning</au><au>Li, Jiayu</au><au>Zhu, Minghui</au><au>Dai, Sheng</au><au>Lian, Cheng</au><au>Liu, Peng Fei</au><au>Yang, Hua Gui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electro‐induced Crystallization Over Amorphous Indium Hydroxide Gels Toward Ampere‐Level Current Density Formate Electrosynthesis</atitle><jtitle>Advanced functional materials</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>34</volume><issue>24</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Electrochemical CO2 reduction reaction (CO2RR) provides a promising way for producing value‐added fuels and chemicals via renewable electricity. However, the dynamic reconstruction of electrocatalysts of atomic active sites hinders in‐depth understanding of catalytic mechanism and further industrial application, especially under ampere‐level current density conditions. In this work, electro‐induced crystallization is reported over an amorphous Indium hydroxide gel (In gel) catalyst, which generates active sites for efficient and selective CO2RR. Molecular dynamic calculation reveals the crystallization process can maintain amorphous In‐OH species on the surface while generating crystallized metallic In under electroreduction condition; structural characterizations prove that the derived partially crystallized In gel is stable consisting of amorphous/crystalline interface, even biased at a high polarization potential of −4 V versus reversible hydrogen electrode. The resultant partially crystalized In gel exhibits a highly selective CO2RR performance toward formate under an ampere‐level current density up to 1200 mA cm−2 simultaneously with 91.89% Faradaic efficiency, which can motivate a high formate generation rate of 20.55 mmol h−1 cm−2. The operando Raman spectroscopic and density functional theoretic results demonstrate the optimized adsorption of *HCOO intermediate for the enhanced formate activity and selectivity over the partially crystallized In gel. A stable amorphous/crystalline structure of In(OH)3/In interface is reconstructed from an amorphous In‐based hydroxide gel through an electro‐induced crystallization process, which can deliver a high selectivity toward formate of over 90% under a current density of over 1.0 A cm−2 in a flow cell reactor.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202316167</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0436-8622</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-06, Vol.34 (24), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3066621331
source Wiley-Blackwell Read & Publish Collection
subjects amorphous Indium hydroxide gels
ampere‐level
Chemical reduction
Crystallization
Current density
Electrocatalysts
electro‐induced crystallization
formate
Gels
Indium
Industrial applications
molecular dynamic calculation
Molecular dynamics
title Electro‐induced Crystallization Over Amorphous Indium Hydroxide Gels Toward Ampere‐Level Current Density Formate Electrosynthesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A46%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electro%E2%80%90induced%20Crystallization%20Over%20Amorphous%20Indium%20Hydroxide%20Gels%20Toward%20Ampere%E2%80%90Level%20Current%20Density%20Formate%20Electrosynthesis&rft.jtitle=Advanced%20functional%20materials&rft.au=Zhao,%20Jia%20Yue&rft.date=2024-06-01&rft.volume=34&rft.issue=24&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202316167&rft_dat=%3Cproquest_cross%3E3066621331%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2727-90cdb2d7f35601b5c9472df2613117abde54b6d43e6478ada7005f195833fc0b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3066621331&rft_id=info:pmid/&rfr_iscdi=true