Loading…
A Route to High Thermoelectric Performance: Solution‐Based Control of Microstructure and Composition in Ag2Se
Thermoelectric materials convert heat into electricity, with a broad range of applications near room temperature (RT). However, the library of RT high‐performance materials is limited. Traditional high‐temperature synthetic methods constrain the range of materials achievable, hindering the ability t...
Saved in:
Published in: | Advanced energy materials 2024-06, Vol.14 (22), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | n/a |
container_issue | 22 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 14 |
creator | Kleinhanns, Tobias Milillo, Francesco Calcabrini, Mariano Fiedler, Christine Horta, Sharona Balazs, Daniel Strumolo, Marissa J. Hasler, Roger Llorca, Jordi Tkadletz, Michael Brutchey, Richard L. Ibáñez, Maria |
description | Thermoelectric materials convert heat into electricity, with a broad range of applications near room temperature (RT). However, the library of RT high‐performance materials is limited. Traditional high‐temperature synthetic methods constrain the range of materials achievable, hindering the ability to surpass crystal structure limitations and engineer defects. Here, a solution‐based synthetic approach is introduced, enabling RT synthesis of powders and exploration of densification at lower temperatures to influence the material's microstructure. The approach is exemplified by Ag2Se, an n‐type alternative to bismuth telluride. It is demonstrated that the concentration of Ag interstitials, grain boundaries, and dislocations are directly correlated to the sintering temperature, and achieve a figure of merit of 1.1 from RT to 100 °C after optimization. Moreover, insights into and resolve Ag2Se's challenges are provided, including stoichiometry issues leading to irreproducible performances. This work highlights the potential of RT solution synthesis in expanding the repertoire of high‐performance thermoelectric materials for practical applications.
A novel solution‐based synthetic approach using thiol‐amine chemistry is presented. This method enables the synthesis of thermoelectric powders at room temperature, providing unique opportunities to explore densification at unconventional lower temperatures and investigate alterations in material microstructure. The approach is exemplified through a paradigmatic case study on Ag2Se, a material benchmarked as the best n‐type alternative to bismuth telluride. |
doi_str_mv | 10.1002/aenm.202400408 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3066621648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066621648</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2738-8b76c9c8beb5ed7cd0e5b616babb3578c0bc35907492ec7a649a89b6c40ea62a3</originalsourceid><addsrcrecordid>eNo9kMFOwzAMhiMEEhPsyjkS5w43SdOUW5kGQ9oAsXGukszbOrVNSVuh3XgEnpEnYdXQfPlt-fdv6SPkJoRRCMDuNFbliAETAALUGRmEMhSBVALOTz1nl2TYNDs4lEhC4HxAXErfXdcibR2d5pstXW7Rlw4LtK3PLX1Dv3a-1JXFe7pwRdfmrvr9_nnQDa7o2FWtdwV1azrPrXdN6zvbdh6prvptWbsm7y9oXtF0wxZ4TS7Wumhw-K9X5ONxshxPg9nr0_M4nQU1i7kKlImlTawyaCJcxXYFGBkZSqON4VGsLBjLowRikTC0sZYi0Sox0gpALZnmV-T2mFt799lh02Y71_nq8DLjIKVkoRTq4EqOrq-8wH1W-7zUfp-FkPVQsx5qdoKapZOX-Wnif4Hub0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066621648</pqid></control><display><type>article</type><title>A Route to High Thermoelectric Performance: Solution‐Based Control of Microstructure and Composition in Ag2Se</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Kleinhanns, Tobias ; Milillo, Francesco ; Calcabrini, Mariano ; Fiedler, Christine ; Horta, Sharona ; Balazs, Daniel ; Strumolo, Marissa J. ; Hasler, Roger ; Llorca, Jordi ; Tkadletz, Michael ; Brutchey, Richard L. ; Ibáñez, Maria</creator><creatorcontrib>Kleinhanns, Tobias ; Milillo, Francesco ; Calcabrini, Mariano ; Fiedler, Christine ; Horta, Sharona ; Balazs, Daniel ; Strumolo, Marissa J. ; Hasler, Roger ; Llorca, Jordi ; Tkadletz, Michael ; Brutchey, Richard L. ; Ibáñez, Maria</creatorcontrib><description>Thermoelectric materials convert heat into electricity, with a broad range of applications near room temperature (RT). However, the library of RT high‐performance materials is limited. Traditional high‐temperature synthetic methods constrain the range of materials achievable, hindering the ability to surpass crystal structure limitations and engineer defects. Here, a solution‐based synthetic approach is introduced, enabling RT synthesis of powders and exploration of densification at lower temperatures to influence the material's microstructure. The approach is exemplified by Ag2Se, an n‐type alternative to bismuth telluride. It is demonstrated that the concentration of Ag interstitials, grain boundaries, and dislocations are directly correlated to the sintering temperature, and achieve a figure of merit of 1.1 from RT to 100 °C after optimization. Moreover, insights into and resolve Ag2Se's challenges are provided, including stoichiometry issues leading to irreproducible performances. This work highlights the potential of RT solution synthesis in expanding the repertoire of high‐performance thermoelectric materials for practical applications.
A novel solution‐based synthetic approach using thiol‐amine chemistry is presented. This method enables the synthesis of thermoelectric powders at room temperature, providing unique opportunities to explore densification at unconventional lower temperatures and investigate alterations in material microstructure. The approach is exemplified through a paradigmatic case study on Ag2Se, a material benchmarked as the best n‐type alternative to bismuth telluride.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202400408</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Bismuth tellurides ; Crystal defects ; Crystal structure ; defects ; Densification ; Dislocations ; Figure of merit ; Grain boundaries ; Interstitials ; Microstructure ; microstructures ; Room temperature ; silver selenide ; Sintering (powder metallurgy) ; Stoichiometry ; strains ; Synthesis ; Temperature ; Thermoelectric materials ; thermoelectricity</subject><ispartof>Advanced energy materials, 2024-06, Vol.14 (22), p.n/a</ispartof><rights>2024 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5013-2843</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Kleinhanns, Tobias</creatorcontrib><creatorcontrib>Milillo, Francesco</creatorcontrib><creatorcontrib>Calcabrini, Mariano</creatorcontrib><creatorcontrib>Fiedler, Christine</creatorcontrib><creatorcontrib>Horta, Sharona</creatorcontrib><creatorcontrib>Balazs, Daniel</creatorcontrib><creatorcontrib>Strumolo, Marissa J.</creatorcontrib><creatorcontrib>Hasler, Roger</creatorcontrib><creatorcontrib>Llorca, Jordi</creatorcontrib><creatorcontrib>Tkadletz, Michael</creatorcontrib><creatorcontrib>Brutchey, Richard L.</creatorcontrib><creatorcontrib>Ibáñez, Maria</creatorcontrib><title>A Route to High Thermoelectric Performance: Solution‐Based Control of Microstructure and Composition in Ag2Se</title><title>Advanced energy materials</title><description>Thermoelectric materials convert heat into electricity, with a broad range of applications near room temperature (RT). However, the library of RT high‐performance materials is limited. Traditional high‐temperature synthetic methods constrain the range of materials achievable, hindering the ability to surpass crystal structure limitations and engineer defects. Here, a solution‐based synthetic approach is introduced, enabling RT synthesis of powders and exploration of densification at lower temperatures to influence the material's microstructure. The approach is exemplified by Ag2Se, an n‐type alternative to bismuth telluride. It is demonstrated that the concentration of Ag interstitials, grain boundaries, and dislocations are directly correlated to the sintering temperature, and achieve a figure of merit of 1.1 from RT to 100 °C after optimization. Moreover, insights into and resolve Ag2Se's challenges are provided, including stoichiometry issues leading to irreproducible performances. This work highlights the potential of RT solution synthesis in expanding the repertoire of high‐performance thermoelectric materials for practical applications.
A novel solution‐based synthetic approach using thiol‐amine chemistry is presented. This method enables the synthesis of thermoelectric powders at room temperature, providing unique opportunities to explore densification at unconventional lower temperatures and investigate alterations in material microstructure. The approach is exemplified through a paradigmatic case study on Ag2Se, a material benchmarked as the best n‐type alternative to bismuth telluride.</description><subject>Bismuth tellurides</subject><subject>Crystal defects</subject><subject>Crystal structure</subject><subject>defects</subject><subject>Densification</subject><subject>Dislocations</subject><subject>Figure of merit</subject><subject>Grain boundaries</subject><subject>Interstitials</subject><subject>Microstructure</subject><subject>microstructures</subject><subject>Room temperature</subject><subject>silver selenide</subject><subject>Sintering (powder metallurgy)</subject><subject>Stoichiometry</subject><subject>strains</subject><subject>Synthesis</subject><subject>Temperature</subject><subject>Thermoelectric materials</subject><subject>thermoelectricity</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNo9kMFOwzAMhiMEEhPsyjkS5w43SdOUW5kGQ9oAsXGukszbOrVNSVuh3XgEnpEnYdXQfPlt-fdv6SPkJoRRCMDuNFbliAETAALUGRmEMhSBVALOTz1nl2TYNDs4lEhC4HxAXErfXdcibR2d5pstXW7Rlw4LtK3PLX1Dv3a-1JXFe7pwRdfmrvr9_nnQDa7o2FWtdwV1azrPrXdN6zvbdh6prvptWbsm7y9oXtF0wxZ4TS7Wumhw-K9X5ONxshxPg9nr0_M4nQU1i7kKlImlTawyaCJcxXYFGBkZSqON4VGsLBjLowRikTC0sZYi0Sox0gpALZnmV-T2mFt799lh02Y71_nq8DLjIKVkoRTq4EqOrq-8wH1W-7zUfp-FkPVQsx5qdoKapZOX-Wnif4Hub0A</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Kleinhanns, Tobias</creator><creator>Milillo, Francesco</creator><creator>Calcabrini, Mariano</creator><creator>Fiedler, Christine</creator><creator>Horta, Sharona</creator><creator>Balazs, Daniel</creator><creator>Strumolo, Marissa J.</creator><creator>Hasler, Roger</creator><creator>Llorca, Jordi</creator><creator>Tkadletz, Michael</creator><creator>Brutchey, Richard L.</creator><creator>Ibáñez, Maria</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5013-2843</orcidid></search><sort><creationdate>20240601</creationdate><title>A Route to High Thermoelectric Performance: Solution‐Based Control of Microstructure and Composition in Ag2Se</title><author>Kleinhanns, Tobias ; Milillo, Francesco ; Calcabrini, Mariano ; Fiedler, Christine ; Horta, Sharona ; Balazs, Daniel ; Strumolo, Marissa J. ; Hasler, Roger ; Llorca, Jordi ; Tkadletz, Michael ; Brutchey, Richard L. ; Ibáñez, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2738-8b76c9c8beb5ed7cd0e5b616babb3578c0bc35907492ec7a649a89b6c40ea62a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bismuth tellurides</topic><topic>Crystal defects</topic><topic>Crystal structure</topic><topic>defects</topic><topic>Densification</topic><topic>Dislocations</topic><topic>Figure of merit</topic><topic>Grain boundaries</topic><topic>Interstitials</topic><topic>Microstructure</topic><topic>microstructures</topic><topic>Room temperature</topic><topic>silver selenide</topic><topic>Sintering (powder metallurgy)</topic><topic>Stoichiometry</topic><topic>strains</topic><topic>Synthesis</topic><topic>Temperature</topic><topic>Thermoelectric materials</topic><topic>thermoelectricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kleinhanns, Tobias</creatorcontrib><creatorcontrib>Milillo, Francesco</creatorcontrib><creatorcontrib>Calcabrini, Mariano</creatorcontrib><creatorcontrib>Fiedler, Christine</creatorcontrib><creatorcontrib>Horta, Sharona</creatorcontrib><creatorcontrib>Balazs, Daniel</creatorcontrib><creatorcontrib>Strumolo, Marissa J.</creatorcontrib><creatorcontrib>Hasler, Roger</creatorcontrib><creatorcontrib>Llorca, Jordi</creatorcontrib><creatorcontrib>Tkadletz, Michael</creatorcontrib><creatorcontrib>Brutchey, Richard L.</creatorcontrib><creatorcontrib>Ibáñez, Maria</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley Online Library Free Content</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kleinhanns, Tobias</au><au>Milillo, Francesco</au><au>Calcabrini, Mariano</au><au>Fiedler, Christine</au><au>Horta, Sharona</au><au>Balazs, Daniel</au><au>Strumolo, Marissa J.</au><au>Hasler, Roger</au><au>Llorca, Jordi</au><au>Tkadletz, Michael</au><au>Brutchey, Richard L.</au><au>Ibáñez, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Route to High Thermoelectric Performance: Solution‐Based Control of Microstructure and Composition in Ag2Se</atitle><jtitle>Advanced energy materials</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>14</volume><issue>22</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Thermoelectric materials convert heat into electricity, with a broad range of applications near room temperature (RT). However, the library of RT high‐performance materials is limited. Traditional high‐temperature synthetic methods constrain the range of materials achievable, hindering the ability to surpass crystal structure limitations and engineer defects. Here, a solution‐based synthetic approach is introduced, enabling RT synthesis of powders and exploration of densification at lower temperatures to influence the material's microstructure. The approach is exemplified by Ag2Se, an n‐type alternative to bismuth telluride. It is demonstrated that the concentration of Ag interstitials, grain boundaries, and dislocations are directly correlated to the sintering temperature, and achieve a figure of merit of 1.1 from RT to 100 °C after optimization. Moreover, insights into and resolve Ag2Se's challenges are provided, including stoichiometry issues leading to irreproducible performances. This work highlights the potential of RT solution synthesis in expanding the repertoire of high‐performance thermoelectric materials for practical applications.
A novel solution‐based synthetic approach using thiol‐amine chemistry is presented. This method enables the synthesis of thermoelectric powders at room temperature, providing unique opportunities to explore densification at unconventional lower temperatures and investigate alterations in material microstructure. The approach is exemplified through a paradigmatic case study on Ag2Se, a material benchmarked as the best n‐type alternative to bismuth telluride.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202400408</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5013-2843</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2024-06, Vol.14 (22), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_3066621648 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Bismuth tellurides Crystal defects Crystal structure defects Densification Dislocations Figure of merit Grain boundaries Interstitials Microstructure microstructures Room temperature silver selenide Sintering (powder metallurgy) Stoichiometry strains Synthesis Temperature Thermoelectric materials thermoelectricity |
title | A Route to High Thermoelectric Performance: Solution‐Based Control of Microstructure and Composition in Ag2Se |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T09%3A58%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Route%20to%20High%20Thermoelectric%20Performance:%20Solution%E2%80%90Based%20Control%20of%20Microstructure%20and%20Composition%20in%20Ag2Se&rft.jtitle=Advanced%20energy%20materials&rft.au=Kleinhanns,%20Tobias&rft.date=2024-06-01&rft.volume=14&rft.issue=22&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202400408&rft_dat=%3Cproquest_wiley%3E3066621648%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2738-8b76c9c8beb5ed7cd0e5b616babb3578c0bc35907492ec7a649a89b6c40ea62a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3066621648&rft_id=info:pmid/&rfr_iscdi=true |