Loading…

A Route to High Thermoelectric Performance: Solution‐Based Control of Microstructure and Composition in Ag2Se

Thermoelectric materials convert heat into electricity, with a broad range of applications near room temperature (RT). However, the library of RT high‐performance materials is limited. Traditional high‐temperature synthetic methods constrain the range of materials achievable, hindering the ability t...

Full description

Saved in:
Bibliographic Details
Published in:Advanced energy materials 2024-06, Vol.14 (22), p.n/a
Main Authors: Kleinhanns, Tobias, Milillo, Francesco, Calcabrini, Mariano, Fiedler, Christine, Horta, Sharona, Balazs, Daniel, Strumolo, Marissa J., Hasler, Roger, Llorca, Jordi, Tkadletz, Michael, Brutchey, Richard L., Ibáñez, Maria
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 22
container_start_page
container_title Advanced energy materials
container_volume 14
creator Kleinhanns, Tobias
Milillo, Francesco
Calcabrini, Mariano
Fiedler, Christine
Horta, Sharona
Balazs, Daniel
Strumolo, Marissa J.
Hasler, Roger
Llorca, Jordi
Tkadletz, Michael
Brutchey, Richard L.
Ibáñez, Maria
description Thermoelectric materials convert heat into electricity, with a broad range of applications near room temperature (RT). However, the library of RT high‐performance materials is limited. Traditional high‐temperature synthetic methods constrain the range of materials achievable, hindering the ability to surpass crystal structure limitations and engineer defects. Here, a solution‐based synthetic approach is introduced, enabling RT synthesis of powders and exploration of densification at lower temperatures to influence the material's microstructure. The approach is exemplified by Ag2Se, an n‐type alternative to bismuth telluride. It is demonstrated that the concentration of Ag interstitials, grain boundaries, and dislocations are directly correlated to the sintering temperature, and achieve a figure of merit of 1.1 from RT to 100 °C after optimization. Moreover, insights into and resolve Ag2Se's challenges are provided, including stoichiometry issues leading to irreproducible performances. This work highlights the potential of RT solution synthesis in expanding the repertoire of high‐performance thermoelectric materials for practical applications. A novel solution‐based synthetic approach using thiol‐amine chemistry is presented. This method enables the synthesis of thermoelectric powders at room temperature, providing unique opportunities to explore densification at unconventional lower temperatures and investigate alterations in material microstructure. The approach is exemplified through a paradigmatic case study on Ag2Se, a material benchmarked as the best n‐type alternative to bismuth telluride.
doi_str_mv 10.1002/aenm.202400408
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3066621648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066621648</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2738-8b76c9c8beb5ed7cd0e5b616babb3578c0bc35907492ec7a649a89b6c40ea62a3</originalsourceid><addsrcrecordid>eNo9kMFOwzAMhiMEEhPsyjkS5w43SdOUW5kGQ9oAsXGukszbOrVNSVuh3XgEnpEnYdXQfPlt-fdv6SPkJoRRCMDuNFbliAETAALUGRmEMhSBVALOTz1nl2TYNDs4lEhC4HxAXErfXdcibR2d5pstXW7Rlw4LtK3PLX1Dv3a-1JXFe7pwRdfmrvr9_nnQDa7o2FWtdwV1azrPrXdN6zvbdh6prvptWbsm7y9oXtF0wxZ4TS7Wumhw-K9X5ONxshxPg9nr0_M4nQU1i7kKlImlTawyaCJcxXYFGBkZSqON4VGsLBjLowRikTC0sZYi0Sox0gpALZnmV-T2mFt799lh02Y71_nq8DLjIKVkoRTq4EqOrq-8wH1W-7zUfp-FkPVQsx5qdoKapZOX-Wnif4Hub0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066621648</pqid></control><display><type>article</type><title>A Route to High Thermoelectric Performance: Solution‐Based Control of Microstructure and Composition in Ag2Se</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Kleinhanns, Tobias ; Milillo, Francesco ; Calcabrini, Mariano ; Fiedler, Christine ; Horta, Sharona ; Balazs, Daniel ; Strumolo, Marissa J. ; Hasler, Roger ; Llorca, Jordi ; Tkadletz, Michael ; Brutchey, Richard L. ; Ibáñez, Maria</creator><creatorcontrib>Kleinhanns, Tobias ; Milillo, Francesco ; Calcabrini, Mariano ; Fiedler, Christine ; Horta, Sharona ; Balazs, Daniel ; Strumolo, Marissa J. ; Hasler, Roger ; Llorca, Jordi ; Tkadletz, Michael ; Brutchey, Richard L. ; Ibáñez, Maria</creatorcontrib><description>Thermoelectric materials convert heat into electricity, with a broad range of applications near room temperature (RT). However, the library of RT high‐performance materials is limited. Traditional high‐temperature synthetic methods constrain the range of materials achievable, hindering the ability to surpass crystal structure limitations and engineer defects. Here, a solution‐based synthetic approach is introduced, enabling RT synthesis of powders and exploration of densification at lower temperatures to influence the material's microstructure. The approach is exemplified by Ag2Se, an n‐type alternative to bismuth telluride. It is demonstrated that the concentration of Ag interstitials, grain boundaries, and dislocations are directly correlated to the sintering temperature, and achieve a figure of merit of 1.1 from RT to 100 °C after optimization. Moreover, insights into and resolve Ag2Se's challenges are provided, including stoichiometry issues leading to irreproducible performances. This work highlights the potential of RT solution synthesis in expanding the repertoire of high‐performance thermoelectric materials for practical applications. A novel solution‐based synthetic approach using thiol‐amine chemistry is presented. This method enables the synthesis of thermoelectric powders at room temperature, providing unique opportunities to explore densification at unconventional lower temperatures and investigate alterations in material microstructure. The approach is exemplified through a paradigmatic case study on Ag2Se, a material benchmarked as the best n‐type alternative to bismuth telluride.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202400408</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Bismuth tellurides ; Crystal defects ; Crystal structure ; defects ; Densification ; Dislocations ; Figure of merit ; Grain boundaries ; Interstitials ; Microstructure ; microstructures ; Room temperature ; silver selenide ; Sintering (powder metallurgy) ; Stoichiometry ; strains ; Synthesis ; Temperature ; Thermoelectric materials ; thermoelectricity</subject><ispartof>Advanced energy materials, 2024-06, Vol.14 (22), p.n/a</ispartof><rights>2024 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5013-2843</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Kleinhanns, Tobias</creatorcontrib><creatorcontrib>Milillo, Francesco</creatorcontrib><creatorcontrib>Calcabrini, Mariano</creatorcontrib><creatorcontrib>Fiedler, Christine</creatorcontrib><creatorcontrib>Horta, Sharona</creatorcontrib><creatorcontrib>Balazs, Daniel</creatorcontrib><creatorcontrib>Strumolo, Marissa J.</creatorcontrib><creatorcontrib>Hasler, Roger</creatorcontrib><creatorcontrib>Llorca, Jordi</creatorcontrib><creatorcontrib>Tkadletz, Michael</creatorcontrib><creatorcontrib>Brutchey, Richard L.</creatorcontrib><creatorcontrib>Ibáñez, Maria</creatorcontrib><title>A Route to High Thermoelectric Performance: Solution‐Based Control of Microstructure and Composition in Ag2Se</title><title>Advanced energy materials</title><description>Thermoelectric materials convert heat into electricity, with a broad range of applications near room temperature (RT). However, the library of RT high‐performance materials is limited. Traditional high‐temperature synthetic methods constrain the range of materials achievable, hindering the ability to surpass crystal structure limitations and engineer defects. Here, a solution‐based synthetic approach is introduced, enabling RT synthesis of powders and exploration of densification at lower temperatures to influence the material's microstructure. The approach is exemplified by Ag2Se, an n‐type alternative to bismuth telluride. It is demonstrated that the concentration of Ag interstitials, grain boundaries, and dislocations are directly correlated to the sintering temperature, and achieve a figure of merit of 1.1 from RT to 100 °C after optimization. Moreover, insights into and resolve Ag2Se's challenges are provided, including stoichiometry issues leading to irreproducible performances. This work highlights the potential of RT solution synthesis in expanding the repertoire of high‐performance thermoelectric materials for practical applications. A novel solution‐based synthetic approach using thiol‐amine chemistry is presented. This method enables the synthesis of thermoelectric powders at room temperature, providing unique opportunities to explore densification at unconventional lower temperatures and investigate alterations in material microstructure. The approach is exemplified through a paradigmatic case study on Ag2Se, a material benchmarked as the best n‐type alternative to bismuth telluride.</description><subject>Bismuth tellurides</subject><subject>Crystal defects</subject><subject>Crystal structure</subject><subject>defects</subject><subject>Densification</subject><subject>Dislocations</subject><subject>Figure of merit</subject><subject>Grain boundaries</subject><subject>Interstitials</subject><subject>Microstructure</subject><subject>microstructures</subject><subject>Room temperature</subject><subject>silver selenide</subject><subject>Sintering (powder metallurgy)</subject><subject>Stoichiometry</subject><subject>strains</subject><subject>Synthesis</subject><subject>Temperature</subject><subject>Thermoelectric materials</subject><subject>thermoelectricity</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNo9kMFOwzAMhiMEEhPsyjkS5w43SdOUW5kGQ9oAsXGukszbOrVNSVuh3XgEnpEnYdXQfPlt-fdv6SPkJoRRCMDuNFbliAETAALUGRmEMhSBVALOTz1nl2TYNDs4lEhC4HxAXErfXdcibR2d5pstXW7Rlw4LtK3PLX1Dv3a-1JXFe7pwRdfmrvr9_nnQDa7o2FWtdwV1azrPrXdN6zvbdh6prvptWbsm7y9oXtF0wxZ4TS7Wumhw-K9X5ONxshxPg9nr0_M4nQU1i7kKlImlTawyaCJcxXYFGBkZSqON4VGsLBjLowRikTC0sZYi0Sox0gpALZnmV-T2mFt799lh02Y71_nq8DLjIKVkoRTq4EqOrq-8wH1W-7zUfp-FkPVQsx5qdoKapZOX-Wnif4Hub0A</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Kleinhanns, Tobias</creator><creator>Milillo, Francesco</creator><creator>Calcabrini, Mariano</creator><creator>Fiedler, Christine</creator><creator>Horta, Sharona</creator><creator>Balazs, Daniel</creator><creator>Strumolo, Marissa J.</creator><creator>Hasler, Roger</creator><creator>Llorca, Jordi</creator><creator>Tkadletz, Michael</creator><creator>Brutchey, Richard L.</creator><creator>Ibáñez, Maria</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5013-2843</orcidid></search><sort><creationdate>20240601</creationdate><title>A Route to High Thermoelectric Performance: Solution‐Based Control of Microstructure and Composition in Ag2Se</title><author>Kleinhanns, Tobias ; Milillo, Francesco ; Calcabrini, Mariano ; Fiedler, Christine ; Horta, Sharona ; Balazs, Daniel ; Strumolo, Marissa J. ; Hasler, Roger ; Llorca, Jordi ; Tkadletz, Michael ; Brutchey, Richard L. ; Ibáñez, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2738-8b76c9c8beb5ed7cd0e5b616babb3578c0bc35907492ec7a649a89b6c40ea62a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bismuth tellurides</topic><topic>Crystal defects</topic><topic>Crystal structure</topic><topic>defects</topic><topic>Densification</topic><topic>Dislocations</topic><topic>Figure of merit</topic><topic>Grain boundaries</topic><topic>Interstitials</topic><topic>Microstructure</topic><topic>microstructures</topic><topic>Room temperature</topic><topic>silver selenide</topic><topic>Sintering (powder metallurgy)</topic><topic>Stoichiometry</topic><topic>strains</topic><topic>Synthesis</topic><topic>Temperature</topic><topic>Thermoelectric materials</topic><topic>thermoelectricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kleinhanns, Tobias</creatorcontrib><creatorcontrib>Milillo, Francesco</creatorcontrib><creatorcontrib>Calcabrini, Mariano</creatorcontrib><creatorcontrib>Fiedler, Christine</creatorcontrib><creatorcontrib>Horta, Sharona</creatorcontrib><creatorcontrib>Balazs, Daniel</creatorcontrib><creatorcontrib>Strumolo, Marissa J.</creatorcontrib><creatorcontrib>Hasler, Roger</creatorcontrib><creatorcontrib>Llorca, Jordi</creatorcontrib><creatorcontrib>Tkadletz, Michael</creatorcontrib><creatorcontrib>Brutchey, Richard L.</creatorcontrib><creatorcontrib>Ibáñez, Maria</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley Online Library Free Content</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kleinhanns, Tobias</au><au>Milillo, Francesco</au><au>Calcabrini, Mariano</au><au>Fiedler, Christine</au><au>Horta, Sharona</au><au>Balazs, Daniel</au><au>Strumolo, Marissa J.</au><au>Hasler, Roger</au><au>Llorca, Jordi</au><au>Tkadletz, Michael</au><au>Brutchey, Richard L.</au><au>Ibáñez, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Route to High Thermoelectric Performance: Solution‐Based Control of Microstructure and Composition in Ag2Se</atitle><jtitle>Advanced energy materials</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>14</volume><issue>22</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Thermoelectric materials convert heat into electricity, with a broad range of applications near room temperature (RT). However, the library of RT high‐performance materials is limited. Traditional high‐temperature synthetic methods constrain the range of materials achievable, hindering the ability to surpass crystal structure limitations and engineer defects. Here, a solution‐based synthetic approach is introduced, enabling RT synthesis of powders and exploration of densification at lower temperatures to influence the material's microstructure. The approach is exemplified by Ag2Se, an n‐type alternative to bismuth telluride. It is demonstrated that the concentration of Ag interstitials, grain boundaries, and dislocations are directly correlated to the sintering temperature, and achieve a figure of merit of 1.1 from RT to 100 °C after optimization. Moreover, insights into and resolve Ag2Se's challenges are provided, including stoichiometry issues leading to irreproducible performances. This work highlights the potential of RT solution synthesis in expanding the repertoire of high‐performance thermoelectric materials for practical applications. A novel solution‐based synthetic approach using thiol‐amine chemistry is presented. This method enables the synthesis of thermoelectric powders at room temperature, providing unique opportunities to explore densification at unconventional lower temperatures and investigate alterations in material microstructure. The approach is exemplified through a paradigmatic case study on Ag2Se, a material benchmarked as the best n‐type alternative to bismuth telluride.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202400408</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5013-2843</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2024-06, Vol.14 (22), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_3066621648
source Wiley-Blackwell Read & Publish Collection
subjects Bismuth tellurides
Crystal defects
Crystal structure
defects
Densification
Dislocations
Figure of merit
Grain boundaries
Interstitials
Microstructure
microstructures
Room temperature
silver selenide
Sintering (powder metallurgy)
Stoichiometry
strains
Synthesis
Temperature
Thermoelectric materials
thermoelectricity
title A Route to High Thermoelectric Performance: Solution‐Based Control of Microstructure and Composition in Ag2Se
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T09%3A58%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Route%20to%20High%20Thermoelectric%20Performance:%20Solution%E2%80%90Based%20Control%20of%20Microstructure%20and%20Composition%20in%20Ag2Se&rft.jtitle=Advanced%20energy%20materials&rft.au=Kleinhanns,%20Tobias&rft.date=2024-06-01&rft.volume=14&rft.issue=22&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202400408&rft_dat=%3Cproquest_wiley%3E3066621648%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2738-8b76c9c8beb5ed7cd0e5b616babb3578c0bc35907492ec7a649a89b6c40ea62a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3066621648&rft_id=info:pmid/&rfr_iscdi=true