Loading…
Data-Driven Direct Adaptive Risk-Sensitive Control of Stochastic Systems
The authors propose a data-driven direct adaptive control law based on the adaptive dynamic programming (ADP) algorithm for continuous-time stochastic linear systems with partially unknown system dynamics and infinite horizon quadratic risk-sensitive indices. The authors use online data of the syste...
Saved in:
Published in: | Journal of systems science and complexity 2024, Vol.37 (4), p.1446-1469 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-p156t-27dce1ebef989e915147e0ff79fad49c11481e7009835e316d03efdb388160533 |
container_end_page | 1469 |
container_issue | 4 |
container_start_page | 1446 |
container_title | Journal of systems science and complexity |
container_volume | 37 |
creator | Qiao, Nan Li, Tao |
description | The authors propose a data-driven direct adaptive control law based on the adaptive dynamic programming (ADP) algorithm for continuous-time stochastic linear systems with partially unknown system dynamics and infinite horizon quadratic risk-sensitive indices. The authors use online data of the system to iteratively solve the generalized algebraic Riccati equation (GARE) and to learn the optimal control law directly. For the case with measurable system noises, the authors show that the adaptive control law approximates the optimal control law as time goes on. For the case with unmeasurable system noises, the authors use the least-square solution calculated only from the measurable data instead of the real solution of the regression equation to iteratively solve the GARE. The authors also study the influences of the intensity of the system noises, the intensity of the exploration noises, the initial iterative matrix, and the sampling period on the convergence of the ADP algorithm. Finally, the authors present two numerical simulation examples to demonstrate the effectiveness of the proposed algorithms. |
doi_str_mv | 10.1007/s11424-024-2421-z |
format | article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_3066865576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066865576</sourcerecordid><originalsourceid>FETCH-LOGICAL-p156t-27dce1ebef989e915147e0ff79fad49c11481e7009835e316d03efdb388160533</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKs_wNuC5-jMZpNsjqVVKxQEq-ew3Z3o1rq7Jqlgf72pFTwM88HLvDMPY5cI1wigbwJikRccUuRFjnx3xEYopeEalD5ONYDhCvPilJ2FsAYQykA5YvNZFSs-8-0Xddms9VTHbNJUQ0yD7KkN73xJXWh_22nfRd9vst5ly9jXb1WIbZ0tv0Okj3DOTly1CXTxl8fs5e72eTrni8f7h-lkwQeUKvJcNzUhrciZ0pBBiYUmcE4bVzWFqdMbJZJO15ZCkkDVgCDXrERZogIpxJhdHfYOvv_cUoh23W99lyytAKVKJaVWSZUfVGHwbfdK_l-FYPfE7IGYTcTsnpjdiR_yz14P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066865576</pqid></control><display><type>article</type><title>Data-Driven Direct Adaptive Risk-Sensitive Control of Stochastic Systems</title><source>Springer Nature</source><creator>Qiao, Nan ; Li, Tao</creator><creatorcontrib>Qiao, Nan ; Li, Tao</creatorcontrib><description>The authors propose a data-driven direct adaptive control law based on the adaptive dynamic programming (ADP) algorithm for continuous-time stochastic linear systems with partially unknown system dynamics and infinite horizon quadratic risk-sensitive indices. The authors use online data of the system to iteratively solve the generalized algebraic Riccati equation (GARE) and to learn the optimal control law directly. For the case with measurable system noises, the authors show that the adaptive control law approximates the optimal control law as time goes on. For the case with unmeasurable system noises, the authors use the least-square solution calculated only from the measurable data instead of the real solution of the regression equation to iteratively solve the GARE. The authors also study the influences of the intensity of the system noises, the intensity of the exploration noises, the initial iterative matrix, and the sampling period on the convergence of the ADP algorithm. Finally, the authors present two numerical simulation examples to demonstrate the effectiveness of the proposed algorithms.</description><identifier>ISSN: 1009-6124</identifier><identifier>EISSN: 1559-7067</identifier><identifier>DOI: 10.1007/s11424-024-2421-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptive control ; Algorithms ; Complex Systems ; Control ; Control theory ; Dynamic programming ; Linear systems ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Operations Research/Decision Theory ; Optimal control ; Riccati equation ; Risk management ; Statistics ; Stochastic systems ; System dynamics ; Systems Theory</subject><ispartof>Journal of systems science and complexity, 2024, Vol.37 (4), p.1446-1469</ispartof><rights>The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2024</rights><rights>The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p156t-27dce1ebef989e915147e0ff79fad49c11481e7009835e316d03efdb388160533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Qiao, Nan</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><title>Data-Driven Direct Adaptive Risk-Sensitive Control of Stochastic Systems</title><title>Journal of systems science and complexity</title><addtitle>J Syst Sci Complex</addtitle><description>The authors propose a data-driven direct adaptive control law based on the adaptive dynamic programming (ADP) algorithm for continuous-time stochastic linear systems with partially unknown system dynamics and infinite horizon quadratic risk-sensitive indices. The authors use online data of the system to iteratively solve the generalized algebraic Riccati equation (GARE) and to learn the optimal control law directly. For the case with measurable system noises, the authors show that the adaptive control law approximates the optimal control law as time goes on. For the case with unmeasurable system noises, the authors use the least-square solution calculated only from the measurable data instead of the real solution of the regression equation to iteratively solve the GARE. The authors also study the influences of the intensity of the system noises, the intensity of the exploration noises, the initial iterative matrix, and the sampling period on the convergence of the ADP algorithm. Finally, the authors present two numerical simulation examples to demonstrate the effectiveness of the proposed algorithms.</description><subject>Adaptive control</subject><subject>Algorithms</subject><subject>Complex Systems</subject><subject>Control</subject><subject>Control theory</subject><subject>Dynamic programming</subject><subject>Linear systems</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Operations Research/Decision Theory</subject><subject>Optimal control</subject><subject>Riccati equation</subject><subject>Risk management</subject><subject>Statistics</subject><subject>Stochastic systems</subject><subject>System dynamics</subject><subject>Systems Theory</subject><issn>1009-6124</issn><issn>1559-7067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkE1LAzEQhoMoWKs_wNuC5-jMZpNsjqVVKxQEq-ew3Z3o1rq7Jqlgf72pFTwM88HLvDMPY5cI1wigbwJikRccUuRFjnx3xEYopeEalD5ONYDhCvPilJ2FsAYQykA5YvNZFSs-8-0Xddms9VTHbNJUQ0yD7KkN73xJXWh_22nfRd9vst5ly9jXb1WIbZ0tv0Okj3DOTly1CXTxl8fs5e72eTrni8f7h-lkwQeUKvJcNzUhrciZ0pBBiYUmcE4bVzWFqdMbJZJO15ZCkkDVgCDXrERZogIpxJhdHfYOvv_cUoh23W99lyytAKVKJaVWSZUfVGHwbfdK_l-FYPfE7IGYTcTsnpjdiR_yz14P</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Qiao, Nan</creator><creator>Li, Tao</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>2024</creationdate><title>Data-Driven Direct Adaptive Risk-Sensitive Control of Stochastic Systems</title><author>Qiao, Nan ; Li, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p156t-27dce1ebef989e915147e0ff79fad49c11481e7009835e316d03efdb388160533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive control</topic><topic>Algorithms</topic><topic>Complex Systems</topic><topic>Control</topic><topic>Control theory</topic><topic>Dynamic programming</topic><topic>Linear systems</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Operations Research/Decision Theory</topic><topic>Optimal control</topic><topic>Riccati equation</topic><topic>Risk management</topic><topic>Statistics</topic><topic>Stochastic systems</topic><topic>System dynamics</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiao, Nan</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><jtitle>Journal of systems science and complexity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiao, Nan</au><au>Li, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven Direct Adaptive Risk-Sensitive Control of Stochastic Systems</atitle><jtitle>Journal of systems science and complexity</jtitle><stitle>J Syst Sci Complex</stitle><date>2024</date><risdate>2024</risdate><volume>37</volume><issue>4</issue><spage>1446</spage><epage>1469</epage><pages>1446-1469</pages><issn>1009-6124</issn><eissn>1559-7067</eissn><abstract>The authors propose a data-driven direct adaptive control law based on the adaptive dynamic programming (ADP) algorithm for continuous-time stochastic linear systems with partially unknown system dynamics and infinite horizon quadratic risk-sensitive indices. The authors use online data of the system to iteratively solve the generalized algebraic Riccati equation (GARE) and to learn the optimal control law directly. For the case with measurable system noises, the authors show that the adaptive control law approximates the optimal control law as time goes on. For the case with unmeasurable system noises, the authors use the least-square solution calculated only from the measurable data instead of the real solution of the regression equation to iteratively solve the GARE. The authors also study the influences of the intensity of the system noises, the intensity of the exploration noises, the initial iterative matrix, and the sampling period on the convergence of the ADP algorithm. Finally, the authors present two numerical simulation examples to demonstrate the effectiveness of the proposed algorithms.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11424-024-2421-z</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1009-6124 |
ispartof | Journal of systems science and complexity, 2024, Vol.37 (4), p.1446-1469 |
issn | 1009-6124 1559-7067 |
language | eng |
recordid | cdi_proquest_journals_3066865576 |
source | Springer Nature |
subjects | Adaptive control Algorithms Complex Systems Control Control theory Dynamic programming Linear systems Mathematics Mathematics and Statistics Mathematics of Computing Operations Research/Decision Theory Optimal control Riccati equation Risk management Statistics Stochastic systems System dynamics Systems Theory |
title | Data-Driven Direct Adaptive Risk-Sensitive Control of Stochastic Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A57%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20Direct%20Adaptive%20Risk-Sensitive%20Control%20of%20Stochastic%20Systems&rft.jtitle=Journal%20of%20systems%20science%20and%20complexity&rft.au=Qiao,%20Nan&rft.date=2024&rft.volume=37&rft.issue=4&rft.spage=1446&rft.epage=1469&rft.pages=1446-1469&rft.issn=1009-6124&rft.eissn=1559-7067&rft_id=info:doi/10.1007/s11424-024-2421-z&rft_dat=%3Cproquest_sprin%3E3066865576%3C/proquest_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p156t-27dce1ebef989e915147e0ff79fad49c11481e7009835e316d03efdb388160533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3066865576&rft_id=info:pmid/&rfr_iscdi=true |