Loading…

Learning Optimal Phase-Shifts of Holographic Metasurface Transceivers

Holographic metasurface transceivers (HMT) are an emerging technology for enhancing the coverage and rate of wireless communication systems. However, acquiring accurate channel state information in HMT-assisted wireless communication systems is critical for achieving these goals. In this paper, we p...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on wireless communications 2024-06, Vol.23 (6), p.5756-5768
Main Authors: Ghosh, Debamita, Hanawal, Manjesh K., Zlatanov, Nikola
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Holographic metasurface transceivers (HMT) are an emerging technology for enhancing the coverage and rate of wireless communication systems. However, acquiring accurate channel state information in HMT-assisted wireless communication systems is critical for achieving these goals. In this paper, we propose an algorithm for learning the optimal phase-shifts at an HMT for the far-field channel model. Our proposed algorithm exploits the structure of the channel gains in the far-field regions and learns the optimal phase-shifts in the presence of noise in the received signals. We prove that the probability that the optimal phase-shifts estimated by our proposed algorithm deviate from the true values decays exponentially in the number of pilot signals. Extensive numerical simulations validate the theoretical guarantees and also demonstrate significant gains as compared to the state-of-the-art policies.
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2023.3328255