Loading…
Learning Optimal Phase-Shifts of Holographic Metasurface Transceivers
Holographic metasurface transceivers (HMT) are an emerging technology for enhancing the coverage and rate of wireless communication systems. However, acquiring accurate channel state information in HMT-assisted wireless communication systems is critical for achieving these goals. In this paper, we p...
Saved in:
Published in: | IEEE transactions on wireless communications 2024-06, Vol.23 (6), p.5756-5768 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c287t-7eeb13d7af81017a84d8fcfc23c4cc59f650f29060ecc38443db019ae2a63b633 |
container_end_page | 5768 |
container_issue | 6 |
container_start_page | 5756 |
container_title | IEEE transactions on wireless communications |
container_volume | 23 |
creator | Ghosh, Debamita Hanawal, Manjesh K. Zlatanov, Nikola |
description | Holographic metasurface transceivers (HMT) are an emerging technology for enhancing the coverage and rate of wireless communication systems. However, acquiring accurate channel state information in HMT-assisted wireless communication systems is critical for achieving these goals. In this paper, we propose an algorithm for learning the optimal phase-shifts at an HMT for the far-field channel model. Our proposed algorithm exploits the structure of the channel gains in the far-field regions and learns the optimal phase-shifts in the presence of noise in the received signals. We prove that the probability that the optimal phase-shifts estimated by our proposed algorithm deviate from the true values decays exponentially in the number of pilot signals. Extensive numerical simulations validate the theoretical guarantees and also demonstrate significant gains as compared to the state-of-the-art policies. |
doi_str_mv | 10.1109/TWC.2023.3328255 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3066954923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10309957</ieee_id><sourcerecordid>3066954923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-7eeb13d7af81017a84d8fcfc23c4cc59f650f29060ecc38443db019ae2a63b633</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwMzBEYk6wfbFjjygqFKmoSAQxWq57blOVJNgpEv-eRO3AdDc87308hNwymjFG9UP1WWaccsgAuOJCnJEJE0KlnOfqfOxBpowX8pJcxbijlBVSiAmZLdCGpm42ybLr6y-7T962NmL6vq19H5PWJ_N2326C7ba1S16xt_EQvHWYVME20WH9gyFekwtv9xFvTnVKPp5mVTlPF8vnl_JxkTquij4tEFcM1oX1ig0HWJWvlXfecXC5c0J7KajnmkqKzoHKc1ivKNMWuZWwkgBTcn-c24X2-4CxN7v2EJphpQEqpRa55iNFj5QLbYwBvenC8Fr4NYyaUZYZZJlRljnJGiJ3x0iNiP9woFqLAv4A4hFlkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066954923</pqid></control><display><type>article</type><title>Learning Optimal Phase-Shifts of Holographic Metasurface Transceivers</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ghosh, Debamita ; Hanawal, Manjesh K. ; Zlatanov, Nikola</creator><creatorcontrib>Ghosh, Debamita ; Hanawal, Manjesh K. ; Zlatanov, Nikola</creatorcontrib><description>Holographic metasurface transceivers (HMT) are an emerging technology for enhancing the coverage and rate of wireless communication systems. However, acquiring accurate channel state information in HMT-assisted wireless communication systems is critical for achieving these goals. In this paper, we propose an algorithm for learning the optimal phase-shifts at an HMT for the far-field channel model. Our proposed algorithm exploits the structure of the channel gains in the far-field regions and learns the optimal phase-shifts in the presence of noise in the received signals. We prove that the probability that the optimal phase-shifts estimated by our proposed algorithm deviate from the true values decays exponentially in the number of pilot signals. Extensive numerical simulations validate the theoretical guarantees and also demonstrate significant gains as compared to the state-of-the-art policies.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2023.3328255</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; beam alignment ; Channel estimation ; channel state information ; Estimation ; Holographic metasurface transceivers ; Holography ; Machine learning ; Metasurfaces ; Phased arrays ; Training ; Transceivers ; Wireless communication ; Wireless communication systems</subject><ispartof>IEEE transactions on wireless communications, 2024-06, Vol.23 (6), p.5756-5768</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-7eeb13d7af81017a84d8fcfc23c4cc59f650f29060ecc38443db019ae2a63b633</cites><orcidid>0000-0002-1807-5487 ; 0000-0003-2848-2227 ; 0000-0001-6828-3308</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10309957$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Ghosh, Debamita</creatorcontrib><creatorcontrib>Hanawal, Manjesh K.</creatorcontrib><creatorcontrib>Zlatanov, Nikola</creatorcontrib><title>Learning Optimal Phase-Shifts of Holographic Metasurface Transceivers</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Holographic metasurface transceivers (HMT) are an emerging technology for enhancing the coverage and rate of wireless communication systems. However, acquiring accurate channel state information in HMT-assisted wireless communication systems is critical for achieving these goals. In this paper, we propose an algorithm for learning the optimal phase-shifts at an HMT for the far-field channel model. Our proposed algorithm exploits the structure of the channel gains in the far-field regions and learns the optimal phase-shifts in the presence of noise in the received signals. We prove that the probability that the optimal phase-shifts estimated by our proposed algorithm deviate from the true values decays exponentially in the number of pilot signals. Extensive numerical simulations validate the theoretical guarantees and also demonstrate significant gains as compared to the state-of-the-art policies.</description><subject>Algorithms</subject><subject>beam alignment</subject><subject>Channel estimation</subject><subject>channel state information</subject><subject>Estimation</subject><subject>Holographic metasurface transceivers</subject><subject>Holography</subject><subject>Machine learning</subject><subject>Metasurfaces</subject><subject>Phased arrays</subject><subject>Training</subject><subject>Transceivers</subject><subject>Wireless communication</subject><subject>Wireless communication systems</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAQhi0EEqWwMzBEYk6wfbFjjygqFKmoSAQxWq57blOVJNgpEv-eRO3AdDc87308hNwymjFG9UP1WWaccsgAuOJCnJEJE0KlnOfqfOxBpowX8pJcxbijlBVSiAmZLdCGpm42ybLr6y-7T962NmL6vq19H5PWJ_N2326C7ba1S16xt_EQvHWYVME20WH9gyFekwtv9xFvTnVKPp5mVTlPF8vnl_JxkTquij4tEFcM1oX1ig0HWJWvlXfecXC5c0J7KajnmkqKzoHKc1ivKNMWuZWwkgBTcn-c24X2-4CxN7v2EJphpQEqpRa55iNFj5QLbYwBvenC8Fr4NYyaUZYZZJlRljnJGiJ3x0iNiP9woFqLAv4A4hFlkw</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Ghosh, Debamita</creator><creator>Hanawal, Manjesh K.</creator><creator>Zlatanov, Nikola</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1807-5487</orcidid><orcidid>https://orcid.org/0000-0003-2848-2227</orcidid><orcidid>https://orcid.org/0000-0001-6828-3308</orcidid></search><sort><creationdate>202406</creationdate><title>Learning Optimal Phase-Shifts of Holographic Metasurface Transceivers</title><author>Ghosh, Debamita ; Hanawal, Manjesh K. ; Zlatanov, Nikola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-7eeb13d7af81017a84d8fcfc23c4cc59f650f29060ecc38443db019ae2a63b633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>beam alignment</topic><topic>Channel estimation</topic><topic>channel state information</topic><topic>Estimation</topic><topic>Holographic metasurface transceivers</topic><topic>Holography</topic><topic>Machine learning</topic><topic>Metasurfaces</topic><topic>Phased arrays</topic><topic>Training</topic><topic>Transceivers</topic><topic>Wireless communication</topic><topic>Wireless communication systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghosh, Debamita</creatorcontrib><creatorcontrib>Hanawal, Manjesh K.</creatorcontrib><creatorcontrib>Zlatanov, Nikola</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghosh, Debamita</au><au>Hanawal, Manjesh K.</au><au>Zlatanov, Nikola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Optimal Phase-Shifts of Holographic Metasurface Transceivers</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2024-06</date><risdate>2024</risdate><volume>23</volume><issue>6</issue><spage>5756</spage><epage>5768</epage><pages>5756-5768</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Holographic metasurface transceivers (HMT) are an emerging technology for enhancing the coverage and rate of wireless communication systems. However, acquiring accurate channel state information in HMT-assisted wireless communication systems is critical for achieving these goals. In this paper, we propose an algorithm for learning the optimal phase-shifts at an HMT for the far-field channel model. Our proposed algorithm exploits the structure of the channel gains in the far-field regions and learns the optimal phase-shifts in the presence of noise in the received signals. We prove that the probability that the optimal phase-shifts estimated by our proposed algorithm deviate from the true values decays exponentially in the number of pilot signals. Extensive numerical simulations validate the theoretical guarantees and also demonstrate significant gains as compared to the state-of-the-art policies.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2023.3328255</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1807-5487</orcidid><orcidid>https://orcid.org/0000-0003-2848-2227</orcidid><orcidid>https://orcid.org/0000-0001-6828-3308</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2024-06, Vol.23 (6), p.5756-5768 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_proquest_journals_3066954923 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms beam alignment Channel estimation channel state information Estimation Holographic metasurface transceivers Holography Machine learning Metasurfaces Phased arrays Training Transceivers Wireless communication Wireless communication systems |
title | Learning Optimal Phase-Shifts of Holographic Metasurface Transceivers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A27%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Optimal%20Phase-Shifts%20of%20Holographic%20Metasurface%20Transceivers&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Ghosh,%20Debamita&rft.date=2024-06&rft.volume=23&rft.issue=6&rft.spage=5756&rft.epage=5768&rft.pages=5756-5768&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2023.3328255&rft_dat=%3Cproquest_ieee_%3E3066954923%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-7eeb13d7af81017a84d8fcfc23c4cc59f650f29060ecc38443db019ae2a63b633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3066954923&rft_id=info:pmid/&rft_ieee_id=10309957&rfr_iscdi=true |