Loading…

Learning Optimal Phase-Shifts of Holographic Metasurface Transceivers

Holographic metasurface transceivers (HMT) are an emerging technology for enhancing the coverage and rate of wireless communication systems. However, acquiring accurate channel state information in HMT-assisted wireless communication systems is critical for achieving these goals. In this paper, we p...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on wireless communications 2024-06, Vol.23 (6), p.5756-5768
Main Authors: Ghosh, Debamita, Hanawal, Manjesh K., Zlatanov, Nikola
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c287t-7eeb13d7af81017a84d8fcfc23c4cc59f650f29060ecc38443db019ae2a63b633
container_end_page 5768
container_issue 6
container_start_page 5756
container_title IEEE transactions on wireless communications
container_volume 23
creator Ghosh, Debamita
Hanawal, Manjesh K.
Zlatanov, Nikola
description Holographic metasurface transceivers (HMT) are an emerging technology for enhancing the coverage and rate of wireless communication systems. However, acquiring accurate channel state information in HMT-assisted wireless communication systems is critical for achieving these goals. In this paper, we propose an algorithm for learning the optimal phase-shifts at an HMT for the far-field channel model. Our proposed algorithm exploits the structure of the channel gains in the far-field regions and learns the optimal phase-shifts in the presence of noise in the received signals. We prove that the probability that the optimal phase-shifts estimated by our proposed algorithm deviate from the true values decays exponentially in the number of pilot signals. Extensive numerical simulations validate the theoretical guarantees and also demonstrate significant gains as compared to the state-of-the-art policies.
doi_str_mv 10.1109/TWC.2023.3328255
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3066954923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10309957</ieee_id><sourcerecordid>3066954923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-7eeb13d7af81017a84d8fcfc23c4cc59f650f29060ecc38443db019ae2a63b633</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwMzBEYk6wfbFjjygqFKmoSAQxWq57blOVJNgpEv-eRO3AdDc87308hNwymjFG9UP1WWaccsgAuOJCnJEJE0KlnOfqfOxBpowX8pJcxbijlBVSiAmZLdCGpm42ybLr6y-7T962NmL6vq19H5PWJ_N2326C7ba1S16xt_EQvHWYVME20WH9gyFekwtv9xFvTnVKPp5mVTlPF8vnl_JxkTquij4tEFcM1oX1ig0HWJWvlXfecXC5c0J7KajnmkqKzoHKc1ivKNMWuZWwkgBTcn-c24X2-4CxN7v2EJphpQEqpRa55iNFj5QLbYwBvenC8Fr4NYyaUZYZZJlRljnJGiJ3x0iNiP9woFqLAv4A4hFlkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066954923</pqid></control><display><type>article</type><title>Learning Optimal Phase-Shifts of Holographic Metasurface Transceivers</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ghosh, Debamita ; Hanawal, Manjesh K. ; Zlatanov, Nikola</creator><creatorcontrib>Ghosh, Debamita ; Hanawal, Manjesh K. ; Zlatanov, Nikola</creatorcontrib><description>Holographic metasurface transceivers (HMT) are an emerging technology for enhancing the coverage and rate of wireless communication systems. However, acquiring accurate channel state information in HMT-assisted wireless communication systems is critical for achieving these goals. In this paper, we propose an algorithm for learning the optimal phase-shifts at an HMT for the far-field channel model. Our proposed algorithm exploits the structure of the channel gains in the far-field regions and learns the optimal phase-shifts in the presence of noise in the received signals. We prove that the probability that the optimal phase-shifts estimated by our proposed algorithm deviate from the true values decays exponentially in the number of pilot signals. Extensive numerical simulations validate the theoretical guarantees and also demonstrate significant gains as compared to the state-of-the-art policies.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2023.3328255</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; beam alignment ; Channel estimation ; channel state information ; Estimation ; Holographic metasurface transceivers ; Holography ; Machine learning ; Metasurfaces ; Phased arrays ; Training ; Transceivers ; Wireless communication ; Wireless communication systems</subject><ispartof>IEEE transactions on wireless communications, 2024-06, Vol.23 (6), p.5756-5768</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-7eeb13d7af81017a84d8fcfc23c4cc59f650f29060ecc38443db019ae2a63b633</cites><orcidid>0000-0002-1807-5487 ; 0000-0003-2848-2227 ; 0000-0001-6828-3308</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10309957$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Ghosh, Debamita</creatorcontrib><creatorcontrib>Hanawal, Manjesh K.</creatorcontrib><creatorcontrib>Zlatanov, Nikola</creatorcontrib><title>Learning Optimal Phase-Shifts of Holographic Metasurface Transceivers</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Holographic metasurface transceivers (HMT) are an emerging technology for enhancing the coverage and rate of wireless communication systems. However, acquiring accurate channel state information in HMT-assisted wireless communication systems is critical for achieving these goals. In this paper, we propose an algorithm for learning the optimal phase-shifts at an HMT for the far-field channel model. Our proposed algorithm exploits the structure of the channel gains in the far-field regions and learns the optimal phase-shifts in the presence of noise in the received signals. We prove that the probability that the optimal phase-shifts estimated by our proposed algorithm deviate from the true values decays exponentially in the number of pilot signals. Extensive numerical simulations validate the theoretical guarantees and also demonstrate significant gains as compared to the state-of-the-art policies.</description><subject>Algorithms</subject><subject>beam alignment</subject><subject>Channel estimation</subject><subject>channel state information</subject><subject>Estimation</subject><subject>Holographic metasurface transceivers</subject><subject>Holography</subject><subject>Machine learning</subject><subject>Metasurfaces</subject><subject>Phased arrays</subject><subject>Training</subject><subject>Transceivers</subject><subject>Wireless communication</subject><subject>Wireless communication systems</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAQhi0EEqWwMzBEYk6wfbFjjygqFKmoSAQxWq57blOVJNgpEv-eRO3AdDc87308hNwymjFG9UP1WWaccsgAuOJCnJEJE0KlnOfqfOxBpowX8pJcxbijlBVSiAmZLdCGpm42ybLr6y-7T962NmL6vq19H5PWJ_N2326C7ba1S16xt_EQvHWYVME20WH9gyFekwtv9xFvTnVKPp5mVTlPF8vnl_JxkTquij4tEFcM1oX1ig0HWJWvlXfecXC5c0J7KajnmkqKzoHKc1ivKNMWuZWwkgBTcn-c24X2-4CxN7v2EJphpQEqpRa55iNFj5QLbYwBvenC8Fr4NYyaUZYZZJlRljnJGiJ3x0iNiP9woFqLAv4A4hFlkw</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Ghosh, Debamita</creator><creator>Hanawal, Manjesh K.</creator><creator>Zlatanov, Nikola</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1807-5487</orcidid><orcidid>https://orcid.org/0000-0003-2848-2227</orcidid><orcidid>https://orcid.org/0000-0001-6828-3308</orcidid></search><sort><creationdate>202406</creationdate><title>Learning Optimal Phase-Shifts of Holographic Metasurface Transceivers</title><author>Ghosh, Debamita ; Hanawal, Manjesh K. ; Zlatanov, Nikola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-7eeb13d7af81017a84d8fcfc23c4cc59f650f29060ecc38443db019ae2a63b633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>beam alignment</topic><topic>Channel estimation</topic><topic>channel state information</topic><topic>Estimation</topic><topic>Holographic metasurface transceivers</topic><topic>Holography</topic><topic>Machine learning</topic><topic>Metasurfaces</topic><topic>Phased arrays</topic><topic>Training</topic><topic>Transceivers</topic><topic>Wireless communication</topic><topic>Wireless communication systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghosh, Debamita</creatorcontrib><creatorcontrib>Hanawal, Manjesh K.</creatorcontrib><creatorcontrib>Zlatanov, Nikola</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghosh, Debamita</au><au>Hanawal, Manjesh K.</au><au>Zlatanov, Nikola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Optimal Phase-Shifts of Holographic Metasurface Transceivers</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2024-06</date><risdate>2024</risdate><volume>23</volume><issue>6</issue><spage>5756</spage><epage>5768</epage><pages>5756-5768</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Holographic metasurface transceivers (HMT) are an emerging technology for enhancing the coverage and rate of wireless communication systems. However, acquiring accurate channel state information in HMT-assisted wireless communication systems is critical for achieving these goals. In this paper, we propose an algorithm for learning the optimal phase-shifts at an HMT for the far-field channel model. Our proposed algorithm exploits the structure of the channel gains in the far-field regions and learns the optimal phase-shifts in the presence of noise in the received signals. We prove that the probability that the optimal phase-shifts estimated by our proposed algorithm deviate from the true values decays exponentially in the number of pilot signals. Extensive numerical simulations validate the theoretical guarantees and also demonstrate significant gains as compared to the state-of-the-art policies.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2023.3328255</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1807-5487</orcidid><orcidid>https://orcid.org/0000-0003-2848-2227</orcidid><orcidid>https://orcid.org/0000-0001-6828-3308</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2024-06, Vol.23 (6), p.5756-5768
issn 1536-1276
1558-2248
language eng
recordid cdi_proquest_journals_3066954923
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
beam alignment
Channel estimation
channel state information
Estimation
Holographic metasurface transceivers
Holography
Machine learning
Metasurfaces
Phased arrays
Training
Transceivers
Wireless communication
Wireless communication systems
title Learning Optimal Phase-Shifts of Holographic Metasurface Transceivers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A27%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Optimal%20Phase-Shifts%20of%20Holographic%20Metasurface%20Transceivers&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Ghosh,%20Debamita&rft.date=2024-06&rft.volume=23&rft.issue=6&rft.spage=5756&rft.epage=5768&rft.pages=5756-5768&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2023.3328255&rft_dat=%3Cproquest_ieee_%3E3066954923%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-7eeb13d7af81017a84d8fcfc23c4cc59f650f29060ecc38443db019ae2a63b633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3066954923&rft_id=info:pmid/&rft_ieee_id=10309957&rfr_iscdi=true