Loading…

On the Limitation of Kernel Dependence Maximization for Feature Selection

A simple and intuitive method for feature selection consists of choosing the feature subset that maximizes a nonparametric measure of dependence between the response and the features. A popular proposal from the literature uses the Hilbert-Schmidt Independence Criterion (HSIC) as the nonparametric d...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-06
Main Authors: Liu, Keli, Ruan, Feng
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Liu, Keli
Ruan, Feng
description A simple and intuitive method for feature selection consists of choosing the feature subset that maximizes a nonparametric measure of dependence between the response and the features. A popular proposal from the literature uses the Hilbert-Schmidt Independence Criterion (HSIC) as the nonparametric dependence measure. The rationale behind this approach to feature selection is that important features will exhibit a high dependence with the response and their inclusion in the set of selected features will increase the HSIC. Through counterexamples, we demonstrate that this rationale is flawed and that feature selection via HSIC maximization can miss critical features.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3067013924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067013924</sourcerecordid><originalsourceid>FETCH-proquest_journals_30670139243</originalsourceid><addsrcrecordid>eNqNyksKwjAUheEgCBbtHi44LqRJHzpWi6LiQOcl1BtMiUlNUhBXb0UX4OjAf74RiRjnabLIGJuQ2PuWUsqKkuU5j8juZCDcEA7qroIIyhqwEvboDGpYY4fmiqZBOIrnIF5fIa2DCkXoHcIZNTafOiNjKbTH-LdTMq82l9U26Zx99OhD3dremeGqOS1KmvIly_h_6g1Y5jwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067013924</pqid></control><display><type>article</type><title>On the Limitation of Kernel Dependence Maximization for Feature Selection</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Liu, Keli ; Ruan, Feng</creator><creatorcontrib>Liu, Keli ; Ruan, Feng</creatorcontrib><description>A simple and intuitive method for feature selection consists of choosing the feature subset that maximizes a nonparametric measure of dependence between the response and the features. A popular proposal from the literature uses the Hilbert-Schmidt Independence Criterion (HSIC) as the nonparametric dependence measure. The rationale behind this approach to feature selection is that important features will exhibit a high dependence with the response and their inclusion in the set of selected features will increase the HSIC. Through counterexamples, we demonstrate that this rationale is flawed and that feature selection via HSIC maximization can miss critical features.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Maximization ; Optimization</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3067013924?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Liu, Keli</creatorcontrib><creatorcontrib>Ruan, Feng</creatorcontrib><title>On the Limitation of Kernel Dependence Maximization for Feature Selection</title><title>arXiv.org</title><description>A simple and intuitive method for feature selection consists of choosing the feature subset that maximizes a nonparametric measure of dependence between the response and the features. A popular proposal from the literature uses the Hilbert-Schmidt Independence Criterion (HSIC) as the nonparametric dependence measure. The rationale behind this approach to feature selection is that important features will exhibit a high dependence with the response and their inclusion in the set of selected features will increase the HSIC. Through counterexamples, we demonstrate that this rationale is flawed and that feature selection via HSIC maximization can miss critical features.</description><subject>Maximization</subject><subject>Optimization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyksKwjAUheEgCBbtHi44LqRJHzpWi6LiQOcl1BtMiUlNUhBXb0UX4OjAf74RiRjnabLIGJuQ2PuWUsqKkuU5j8juZCDcEA7qroIIyhqwEvboDGpYY4fmiqZBOIrnIF5fIa2DCkXoHcIZNTafOiNjKbTH-LdTMq82l9U26Zx99OhD3dremeGqOS1KmvIly_h_6g1Y5jwg</recordid><startdate>20240611</startdate><enddate>20240611</enddate><creator>Liu, Keli</creator><creator>Ruan, Feng</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240611</creationdate><title>On the Limitation of Kernel Dependence Maximization for Feature Selection</title><author>Liu, Keli ; Ruan, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30670139243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Maximization</topic><topic>Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Keli</creatorcontrib><creatorcontrib>Ruan, Feng</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Keli</au><au>Ruan, Feng</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the Limitation of Kernel Dependence Maximization for Feature Selection</atitle><jtitle>arXiv.org</jtitle><date>2024-06-11</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>A simple and intuitive method for feature selection consists of choosing the feature subset that maximizes a nonparametric measure of dependence between the response and the features. A popular proposal from the literature uses the Hilbert-Schmidt Independence Criterion (HSIC) as the nonparametric dependence measure. The rationale behind this approach to feature selection is that important features will exhibit a high dependence with the response and their inclusion in the set of selected features will increase the HSIC. Through counterexamples, we demonstrate that this rationale is flawed and that feature selection via HSIC maximization can miss critical features.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_3067013924
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Maximization
Optimization
title On the Limitation of Kernel Dependence Maximization for Feature Selection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A32%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20Limitation%20of%20Kernel%20Dependence%20Maximization%20for%20Feature%20Selection&rft.jtitle=arXiv.org&rft.au=Liu,%20Keli&rft.date=2024-06-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3067013924%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30670139243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3067013924&rft_id=info:pmid/&rfr_iscdi=true