Loading…
On the Limitation of Kernel Dependence Maximization for Feature Selection
A simple and intuitive method for feature selection consists of choosing the feature subset that maximizes a nonparametric measure of dependence between the response and the features. A popular proposal from the literature uses the Hilbert-Schmidt Independence Criterion (HSIC) as the nonparametric d...
Saved in:
Published in: | arXiv.org 2024-06 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Liu, Keli Ruan, Feng |
description | A simple and intuitive method for feature selection consists of choosing the feature subset that maximizes a nonparametric measure of dependence between the response and the features. A popular proposal from the literature uses the Hilbert-Schmidt Independence Criterion (HSIC) as the nonparametric dependence measure. The rationale behind this approach to feature selection is that important features will exhibit a high dependence with the response and their inclusion in the set of selected features will increase the HSIC. Through counterexamples, we demonstrate that this rationale is flawed and that feature selection via HSIC maximization can miss critical features. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3067013924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067013924</sourcerecordid><originalsourceid>FETCH-proquest_journals_30670139243</originalsourceid><addsrcrecordid>eNqNyksKwjAUheEgCBbtHi44LqRJHzpWi6LiQOcl1BtMiUlNUhBXb0UX4OjAf74RiRjnabLIGJuQ2PuWUsqKkuU5j8juZCDcEA7qroIIyhqwEvboDGpYY4fmiqZBOIrnIF5fIa2DCkXoHcIZNTafOiNjKbTH-LdTMq82l9U26Zx99OhD3dremeGqOS1KmvIly_h_6g1Y5jwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067013924</pqid></control><display><type>article</type><title>On the Limitation of Kernel Dependence Maximization for Feature Selection</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Liu, Keli ; Ruan, Feng</creator><creatorcontrib>Liu, Keli ; Ruan, Feng</creatorcontrib><description>A simple and intuitive method for feature selection consists of choosing the feature subset that maximizes a nonparametric measure of dependence between the response and the features. A popular proposal from the literature uses the Hilbert-Schmidt Independence Criterion (HSIC) as the nonparametric dependence measure. The rationale behind this approach to feature selection is that important features will exhibit a high dependence with the response and their inclusion in the set of selected features will increase the HSIC. Through counterexamples, we demonstrate that this rationale is flawed and that feature selection via HSIC maximization can miss critical features.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Maximization ; Optimization</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3067013924?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Liu, Keli</creatorcontrib><creatorcontrib>Ruan, Feng</creatorcontrib><title>On the Limitation of Kernel Dependence Maximization for Feature Selection</title><title>arXiv.org</title><description>A simple and intuitive method for feature selection consists of choosing the feature subset that maximizes a nonparametric measure of dependence between the response and the features. A popular proposal from the literature uses the Hilbert-Schmidt Independence Criterion (HSIC) as the nonparametric dependence measure. The rationale behind this approach to feature selection is that important features will exhibit a high dependence with the response and their inclusion in the set of selected features will increase the HSIC. Through counterexamples, we demonstrate that this rationale is flawed and that feature selection via HSIC maximization can miss critical features.</description><subject>Maximization</subject><subject>Optimization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyksKwjAUheEgCBbtHi44LqRJHzpWi6LiQOcl1BtMiUlNUhBXb0UX4OjAf74RiRjnabLIGJuQ2PuWUsqKkuU5j8juZCDcEA7qroIIyhqwEvboDGpYY4fmiqZBOIrnIF5fIa2DCkXoHcIZNTafOiNjKbTH-LdTMq82l9U26Zx99OhD3dremeGqOS1KmvIly_h_6g1Y5jwg</recordid><startdate>20240611</startdate><enddate>20240611</enddate><creator>Liu, Keli</creator><creator>Ruan, Feng</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240611</creationdate><title>On the Limitation of Kernel Dependence Maximization for Feature Selection</title><author>Liu, Keli ; Ruan, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30670139243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Maximization</topic><topic>Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Keli</creatorcontrib><creatorcontrib>Ruan, Feng</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Keli</au><au>Ruan, Feng</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the Limitation of Kernel Dependence Maximization for Feature Selection</atitle><jtitle>arXiv.org</jtitle><date>2024-06-11</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>A simple and intuitive method for feature selection consists of choosing the feature subset that maximizes a nonparametric measure of dependence between the response and the features. A popular proposal from the literature uses the Hilbert-Schmidt Independence Criterion (HSIC) as the nonparametric dependence measure. The rationale behind this approach to feature selection is that important features will exhibit a high dependence with the response and their inclusion in the set of selected features will increase the HSIC. Through counterexamples, we demonstrate that this rationale is flawed and that feature selection via HSIC maximization can miss critical features.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3067013924 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Maximization Optimization |
title | On the Limitation of Kernel Dependence Maximization for Feature Selection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A32%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20Limitation%20of%20Kernel%20Dependence%20Maximization%20for%20Feature%20Selection&rft.jtitle=arXiv.org&rft.au=Liu,%20Keli&rft.date=2024-06-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3067013924%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30670139243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3067013924&rft_id=info:pmid/&rfr_iscdi=true |