Loading…

Convergence rate of random scan Coordinate Ascent Variational Inference under log-concavity

The Coordinate Ascent Variational Inference scheme is a popular algorithm used to compute the mean-field approximation of a probability distribution of interest. We analyze its random scan version, under log-concavity assumptions on the target density. Our approach builds on the recent work of M. Ar...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-09
Main Authors: Lavenant, Hugo, Zanella, Giacomo
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Lavenant, Hugo
Zanella, Giacomo
description The Coordinate Ascent Variational Inference scheme is a popular algorithm used to compute the mean-field approximation of a probability distribution of interest. We analyze its random scan version, under log-concavity assumptions on the target density. Our approach builds on the recent work of M. Arnese and D. Lacker, \emph{Convergence of coordinate ascent variational inference for log-concave measures via optimal transport} [arXiv:2404.08792] which studies the deterministic scan version of the algorithm, phrasing it as a block-coordinate descent algorithm in the space of probability distributions endowed with the geometry of optimal transport. We obtain tight rates for the random scan version, which imply that the total number of factor updates required to converge scales linearly with the condition number and the number of blocks of the target distribution. By contrast, available bounds for the deterministic scan case scale quadratically in the same quantities, which is analogue to what happens for optimization of convex functions in Euclidean spaces.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3067014148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067014148</sourcerecordid><originalsourceid>FETCH-proquest_journals_30670141483</originalsourceid><addsrcrecordid>eNqNjL0KwjAURoMgWLTvEHAupEn_VimK7uLiICG9LSn1Xk3Sgm9vFR_A6Qzf-c6CRVKpNKkyKVcs9r4XQsiilHmuInatCSdwHaAB7nQATu1MbOjOvdHIayLXWPwsO28AA79oZ3WwhHrgJ2zBfb8jNuD4QF1iCI2ebHht2LLVg4f4xzXbHvbn-pg8HD1H8OHW0-jmjL8pUZQizdKsUv9Zb5NRQ0Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067014148</pqid></control><display><type>article</type><title>Convergence rate of random scan Coordinate Ascent Variational Inference under log-concavity</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Lavenant, Hugo ; Zanella, Giacomo</creator><creatorcontrib>Lavenant, Hugo ; Zanella, Giacomo</creatorcontrib><description>The Coordinate Ascent Variational Inference scheme is a popular algorithm used to compute the mean-field approximation of a probability distribution of interest. We analyze its random scan version, under log-concavity assumptions on the target density. Our approach builds on the recent work of M. Arnese and D. Lacker, \emph{Convergence of coordinate ascent variational inference for log-concave measures via optimal transport} [arXiv:2404.08792] which studies the deterministic scan version of the algorithm, phrasing it as a block-coordinate descent algorithm in the space of probability distributions endowed with the geometry of optimal transport. We obtain tight rates for the random scan version, which imply that the total number of factor updates required to converge scales linearly with the condition number and the number of blocks of the target distribution. By contrast, available bounds for the deterministic scan case scale quadratically in the same quantities, which is analogue to what happens for optimization of convex functions in Euclidean spaces.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Concavity ; Convergence ; Euclidean geometry ; Inference</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3067014148?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Lavenant, Hugo</creatorcontrib><creatorcontrib>Zanella, Giacomo</creatorcontrib><title>Convergence rate of random scan Coordinate Ascent Variational Inference under log-concavity</title><title>arXiv.org</title><description>The Coordinate Ascent Variational Inference scheme is a popular algorithm used to compute the mean-field approximation of a probability distribution of interest. We analyze its random scan version, under log-concavity assumptions on the target density. Our approach builds on the recent work of M. Arnese and D. Lacker, \emph{Convergence of coordinate ascent variational inference for log-concave measures via optimal transport} [arXiv:2404.08792] which studies the deterministic scan version of the algorithm, phrasing it as a block-coordinate descent algorithm in the space of probability distributions endowed with the geometry of optimal transport. We obtain tight rates for the random scan version, which imply that the total number of factor updates required to converge scales linearly with the condition number and the number of blocks of the target distribution. By contrast, available bounds for the deterministic scan case scale quadratically in the same quantities, which is analogue to what happens for optimization of convex functions in Euclidean spaces.</description><subject>Algorithms</subject><subject>Concavity</subject><subject>Convergence</subject><subject>Euclidean geometry</subject><subject>Inference</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjL0KwjAURoMgWLTvEHAupEn_VimK7uLiICG9LSn1Xk3Sgm9vFR_A6Qzf-c6CRVKpNKkyKVcs9r4XQsiilHmuInatCSdwHaAB7nQATu1MbOjOvdHIayLXWPwsO28AA79oZ3WwhHrgJ2zBfb8jNuD4QF1iCI2ebHht2LLVg4f4xzXbHvbn-pg8HD1H8OHW0-jmjL8pUZQizdKsUv9Zb5NRQ0Y</recordid><startdate>20240923</startdate><enddate>20240923</enddate><creator>Lavenant, Hugo</creator><creator>Zanella, Giacomo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240923</creationdate><title>Convergence rate of random scan Coordinate Ascent Variational Inference under log-concavity</title><author>Lavenant, Hugo ; Zanella, Giacomo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30670141483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Concavity</topic><topic>Convergence</topic><topic>Euclidean geometry</topic><topic>Inference</topic><toplevel>online_resources</toplevel><creatorcontrib>Lavenant, Hugo</creatorcontrib><creatorcontrib>Zanella, Giacomo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lavenant, Hugo</au><au>Zanella, Giacomo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Convergence rate of random scan Coordinate Ascent Variational Inference under log-concavity</atitle><jtitle>arXiv.org</jtitle><date>2024-09-23</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The Coordinate Ascent Variational Inference scheme is a popular algorithm used to compute the mean-field approximation of a probability distribution of interest. We analyze its random scan version, under log-concavity assumptions on the target density. Our approach builds on the recent work of M. Arnese and D. Lacker, \emph{Convergence of coordinate ascent variational inference for log-concave measures via optimal transport} [arXiv:2404.08792] which studies the deterministic scan version of the algorithm, phrasing it as a block-coordinate descent algorithm in the space of probability distributions endowed with the geometry of optimal transport. We obtain tight rates for the random scan version, which imply that the total number of factor updates required to converge scales linearly with the condition number and the number of blocks of the target distribution. By contrast, available bounds for the deterministic scan case scale quadratically in the same quantities, which is analogue to what happens for optimization of convex functions in Euclidean spaces.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_3067014148
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Algorithms
Concavity
Convergence
Euclidean geometry
Inference
title Convergence rate of random scan Coordinate Ascent Variational Inference under log-concavity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A58%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Convergence%20rate%20of%20random%20scan%20Coordinate%20Ascent%20Variational%20Inference%20under%20log-concavity&rft.jtitle=arXiv.org&rft.au=Lavenant,%20Hugo&rft.date=2024-09-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3067014148%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30670141483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3067014148&rft_id=info:pmid/&rfr_iscdi=true