Loading…

Nonsmooth nonconvex optimization on Riemannian manifolds via bundle trust region algorithm

This paper develops an iterative algorithm to solve nonsmooth nonconvex optimization problems on complete Riemannian manifolds. The algorithm is based on the combination of the well known trust region and bundle methods. According to the process of the most bundle methods, the objective function is...

Full description

Saved in:
Bibliographic Details
Published in:Computational optimization and applications 2024-07, Vol.88 (3), p.871-902
Main Authors: Hoseini Monjezi, N., Nobakhtian, S., Pouryayevali, M. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-6a0481c5f6c2a1224983970e246279101fde2748458806fa5431a3057c2a7da63
container_end_page 902
container_issue 3
container_start_page 871
container_title Computational optimization and applications
container_volume 88
creator Hoseini Monjezi, N.
Nobakhtian, S.
Pouryayevali, M. R.
description This paper develops an iterative algorithm to solve nonsmooth nonconvex optimization problems on complete Riemannian manifolds. The algorithm is based on the combination of the well known trust region and bundle methods. According to the process of the most bundle methods, the objective function is approximated by a piecewise linear working model which is updated by adding cutting planes at unsuccessful trial steps. Then at each iteration, by solving a subproblem that employs the working model in the objective function subject to the trust region, a candidate descent direction is obtained. We study the algorithm from both theoretical and practical points of view and its global convergence is verified to stationary points for locally Lipschitz functions. Moreover, in order to demonstrate the reliability and efficiency, a MATLAB implementation of the proposed algorithm is prepared and results of numerical experiments are reported.
doi_str_mv 10.1007/s10589-024-00569-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3067035835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067035835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-6a0481c5f6c2a1224983970e246279101fde2748458806fa5431a3057c2a7da63</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcB19WbpHl0KYMvGBREN25CbNOZDG0yJqmov96OFdwJF87mO-fCh9ApgXMCIC8SAa6qAmhZAHBRFXwPzQiXrKCqKvfRDCoqCgHADtFRShsAqCSjM_RyH3zqQ8hr7IOvg3-3Hzhss-vdl8kueDzeo7O98d4Zj8d0beiahN-dwa-DbzqLcxxSxtGudrzpViG6vO6P0UFrumRPfnOOnq-vnha3xfLh5m5xuSxqKiEXwkCpSM1bUVNDKC0rxSoJlpaCyooAaRtLZalKrhSI1vCSEcOAyxGXjRFsjs6m3W0Mb4NNWW_CEP34UjMQEhhXjI8Unag6hpSibfU2ut7ET01A7xzqyaEeHeofh3pXYlMpjbBf2fg3_U_rG-F7dHk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067035835</pqid></control><display><type>article</type><title>Nonsmooth nonconvex optimization on Riemannian manifolds via bundle trust region algorithm</title><source>Springer Link</source><creator>Hoseini Monjezi, N. ; Nobakhtian, S. ; Pouryayevali, M. R.</creator><creatorcontrib>Hoseini Monjezi, N. ; Nobakhtian, S. ; Pouryayevali, M. R.</creatorcontrib><description>This paper develops an iterative algorithm to solve nonsmooth nonconvex optimization problems on complete Riemannian manifolds. The algorithm is based on the combination of the well known trust region and bundle methods. According to the process of the most bundle methods, the objective function is approximated by a piecewise linear working model which is updated by adding cutting planes at unsuccessful trial steps. Then at each iteration, by solving a subproblem that employs the working model in the objective function subject to the trust region, a candidate descent direction is obtained. We study the algorithm from both theoretical and practical points of view and its global convergence is verified to stationary points for locally Lipschitz functions. Moreover, in order to demonstrate the reliability and efficiency, a MATLAB implementation of the proposed algorithm is prepared and results of numerical experiments are reported.</description><identifier>ISSN: 0926-6003</identifier><identifier>EISSN: 1573-2894</identifier><identifier>DOI: 10.1007/s10589-024-00569-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applied mathematics ; Convex and Discrete Geometry ; Iterative algorithms ; Management Science ; Mathematics ; Mathematics and Statistics ; Methods ; Operations Research ; Operations Research/Decision Theory ; Optimization ; Optimization algorithms ; Optimization techniques ; Riemann manifold ; Statistics ; Topological manifolds</subject><ispartof>Computational optimization and applications, 2024-07, Vol.88 (3), p.871-902</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-6a0481c5f6c2a1224983970e246279101fde2748458806fa5431a3057c2a7da63</cites><orcidid>0000-0003-4869-8236</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Hoseini Monjezi, N.</creatorcontrib><creatorcontrib>Nobakhtian, S.</creatorcontrib><creatorcontrib>Pouryayevali, M. R.</creatorcontrib><title>Nonsmooth nonconvex optimization on Riemannian manifolds via bundle trust region algorithm</title><title>Computational optimization and applications</title><addtitle>Comput Optim Appl</addtitle><description>This paper develops an iterative algorithm to solve nonsmooth nonconvex optimization problems on complete Riemannian manifolds. The algorithm is based on the combination of the well known trust region and bundle methods. According to the process of the most bundle methods, the objective function is approximated by a piecewise linear working model which is updated by adding cutting planes at unsuccessful trial steps. Then at each iteration, by solving a subproblem that employs the working model in the objective function subject to the trust region, a candidate descent direction is obtained. We study the algorithm from both theoretical and practical points of view and its global convergence is verified to stationary points for locally Lipschitz functions. Moreover, in order to demonstrate the reliability and efficiency, a MATLAB implementation of the proposed algorithm is prepared and results of numerical experiments are reported.</description><subject>Applied mathematics</subject><subject>Convex and Discrete Geometry</subject><subject>Iterative algorithms</subject><subject>Management Science</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Operations Research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Optimization techniques</subject><subject>Riemann manifold</subject><subject>Statistics</subject><subject>Topological manifolds</subject><issn>0926-6003</issn><issn>1573-2894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcB19WbpHl0KYMvGBREN25CbNOZDG0yJqmov96OFdwJF87mO-fCh9ApgXMCIC8SAa6qAmhZAHBRFXwPzQiXrKCqKvfRDCoqCgHADtFRShsAqCSjM_RyH3zqQ8hr7IOvg3-3Hzhss-vdl8kueDzeo7O98d4Zj8d0beiahN-dwa-DbzqLcxxSxtGudrzpViG6vO6P0UFrumRPfnOOnq-vnha3xfLh5m5xuSxqKiEXwkCpSM1bUVNDKC0rxSoJlpaCyooAaRtLZalKrhSI1vCSEcOAyxGXjRFsjs6m3W0Mb4NNWW_CEP34UjMQEhhXjI8Unag6hpSibfU2ut7ET01A7xzqyaEeHeofh3pXYlMpjbBf2fg3_U_rG-F7dHk</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Hoseini Monjezi, N.</creator><creator>Nobakhtian, S.</creator><creator>Pouryayevali, M. R.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4869-8236</orcidid></search><sort><creationdate>20240701</creationdate><title>Nonsmooth nonconvex optimization on Riemannian manifolds via bundle trust region algorithm</title><author>Hoseini Monjezi, N. ; Nobakhtian, S. ; Pouryayevali, M. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-6a0481c5f6c2a1224983970e246279101fde2748458806fa5431a3057c2a7da63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applied mathematics</topic><topic>Convex and Discrete Geometry</topic><topic>Iterative algorithms</topic><topic>Management Science</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Operations Research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Optimization techniques</topic><topic>Riemann manifold</topic><topic>Statistics</topic><topic>Topological manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoseini Monjezi, N.</creatorcontrib><creatorcontrib>Nobakhtian, S.</creatorcontrib><creatorcontrib>Pouryayevali, M. R.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational optimization and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoseini Monjezi, N.</au><au>Nobakhtian, S.</au><au>Pouryayevali, M. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonsmooth nonconvex optimization on Riemannian manifolds via bundle trust region algorithm</atitle><jtitle>Computational optimization and applications</jtitle><stitle>Comput Optim Appl</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>88</volume><issue>3</issue><spage>871</spage><epage>902</epage><pages>871-902</pages><issn>0926-6003</issn><eissn>1573-2894</eissn><abstract>This paper develops an iterative algorithm to solve nonsmooth nonconvex optimization problems on complete Riemannian manifolds. The algorithm is based on the combination of the well known trust region and bundle methods. According to the process of the most bundle methods, the objective function is approximated by a piecewise linear working model which is updated by adding cutting planes at unsuccessful trial steps. Then at each iteration, by solving a subproblem that employs the working model in the objective function subject to the trust region, a candidate descent direction is obtained. We study the algorithm from both theoretical and practical points of view and its global convergence is verified to stationary points for locally Lipschitz functions. Moreover, in order to demonstrate the reliability and efficiency, a MATLAB implementation of the proposed algorithm is prepared and results of numerical experiments are reported.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10589-024-00569-5</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0003-4869-8236</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0926-6003
ispartof Computational optimization and applications, 2024-07, Vol.88 (3), p.871-902
issn 0926-6003
1573-2894
language eng
recordid cdi_proquest_journals_3067035835
source Springer Link
subjects Applied mathematics
Convex and Discrete Geometry
Iterative algorithms
Management Science
Mathematics
Mathematics and Statistics
Methods
Operations Research
Operations Research/Decision Theory
Optimization
Optimization algorithms
Optimization techniques
Riemann manifold
Statistics
Topological manifolds
title Nonsmooth nonconvex optimization on Riemannian manifolds via bundle trust region algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A04%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonsmooth%20nonconvex%20optimization%20on%20Riemannian%20manifolds%20via%20bundle%20trust%20region%20algorithm&rft.jtitle=Computational%20optimization%20and%20applications&rft.au=Hoseini%C2%A0Monjezi,%20N.&rft.date=2024-07-01&rft.volume=88&rft.issue=3&rft.spage=871&rft.epage=902&rft.pages=871-902&rft.issn=0926-6003&rft.eissn=1573-2894&rft_id=info:doi/10.1007/s10589-024-00569-5&rft_dat=%3Cproquest_cross%3E3067035835%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-6a0481c5f6c2a1224983970e246279101fde2748458806fa5431a3057c2a7da63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3067035835&rft_id=info:pmid/&rfr_iscdi=true