Loading…

Detecting Markovianity of Quantum Processes via Recurrent Neural Networks

We present a novel methodology utilizing Recurrent Neural Networks (RNNs) to classify Markovian and non-Markovian quantum processes, leveraging time series data derived from Choi states. The model exhibits exceptional accuracy, surpassing 95%, across diverse scenarios, encompassing dephasing and Pau...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-06
Main Authors: Angela Rosy Morgillo, Sacchi, Massimiliano F, Macchiavello, Chiara
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Angela Rosy Morgillo
Sacchi, Massimiliano F
Macchiavello, Chiara
description We present a novel methodology utilizing Recurrent Neural Networks (RNNs) to classify Markovian and non-Markovian quantum processes, leveraging time series data derived from Choi states. The model exhibits exceptional accuracy, surpassing 95%, across diverse scenarios, encompassing dephasing and Pauli channels in an arbitrary basis, and generalized amplitude damping dynamics. Additionally, the developed model shows efficient forecasting capabilities for the analyzed time series data. These results suggest the potential of RNNs in discerning and predicting the Markovian nature of quantum processes.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3067540524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067540524</sourcerecordid><originalsourceid>FETCH-proquest_journals_30675405243</originalsourceid><addsrcrecordid>eNqNyrsKwjAUgOEgCBbtOwScCzGX1t0LOigq7iWUU-nFRM9JFN_eDj6A0z98_4glUqlFttRSTlhK1AohZF5IY1TC9msIUIXG3fjBYudfjXVN-HBf83O0LsQ7P6GvgAiID8gvUEVEcIEfIaLth4S3x45mbFzbniD9dcrm2811tcse6J8RKJStj-gGKpXIC6OFkVr9d30BxzM84A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067540524</pqid></control><display><type>article</type><title>Detecting Markovianity of Quantum Processes via Recurrent Neural Networks</title><source>ProQuest - Publicly Available Content Database</source><creator>Angela Rosy Morgillo ; Sacchi, Massimiliano F ; Macchiavello, Chiara</creator><creatorcontrib>Angela Rosy Morgillo ; Sacchi, Massimiliano F ; Macchiavello, Chiara</creatorcontrib><description>We present a novel methodology utilizing Recurrent Neural Networks (RNNs) to classify Markovian and non-Markovian quantum processes, leveraging time series data derived from Choi states. The model exhibits exceptional accuracy, surpassing 95%, across diverse scenarios, encompassing dephasing and Pauli channels in an arbitrary basis, and generalized amplitude damping dynamics. Additionally, the developed model shows efficient forecasting capabilities for the analyzed time series data. These results suggest the potential of RNNs in discerning and predicting the Markovian nature of quantum processes.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Damping ; Recurrent neural networks ; Time series</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3067540524?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Angela Rosy Morgillo</creatorcontrib><creatorcontrib>Sacchi, Massimiliano F</creatorcontrib><creatorcontrib>Macchiavello, Chiara</creatorcontrib><title>Detecting Markovianity of Quantum Processes via Recurrent Neural Networks</title><title>arXiv.org</title><description>We present a novel methodology utilizing Recurrent Neural Networks (RNNs) to classify Markovian and non-Markovian quantum processes, leveraging time series data derived from Choi states. The model exhibits exceptional accuracy, surpassing 95%, across diverse scenarios, encompassing dephasing and Pauli channels in an arbitrary basis, and generalized amplitude damping dynamics. Additionally, the developed model shows efficient forecasting capabilities for the analyzed time series data. These results suggest the potential of RNNs in discerning and predicting the Markovian nature of quantum processes.</description><subject>Damping</subject><subject>Recurrent neural networks</subject><subject>Time series</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyrsKwjAUgOEgCBbtOwScCzGX1t0LOigq7iWUU-nFRM9JFN_eDj6A0z98_4glUqlFttRSTlhK1AohZF5IY1TC9msIUIXG3fjBYudfjXVN-HBf83O0LsQ7P6GvgAiID8gvUEVEcIEfIaLth4S3x45mbFzbniD9dcrm2811tcse6J8RKJStj-gGKpXIC6OFkVr9d30BxzM84A</recordid><startdate>20240612</startdate><enddate>20240612</enddate><creator>Angela Rosy Morgillo</creator><creator>Sacchi, Massimiliano F</creator><creator>Macchiavello, Chiara</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240612</creationdate><title>Detecting Markovianity of Quantum Processes via Recurrent Neural Networks</title><author>Angela Rosy Morgillo ; Sacchi, Massimiliano F ; Macchiavello, Chiara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30675405243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Damping</topic><topic>Recurrent neural networks</topic><topic>Time series</topic><toplevel>online_resources</toplevel><creatorcontrib>Angela Rosy Morgillo</creatorcontrib><creatorcontrib>Sacchi, Massimiliano F</creatorcontrib><creatorcontrib>Macchiavello, Chiara</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Angela Rosy Morgillo</au><au>Sacchi, Massimiliano F</au><au>Macchiavello, Chiara</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Detecting Markovianity of Quantum Processes via Recurrent Neural Networks</atitle><jtitle>arXiv.org</jtitle><date>2024-06-12</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We present a novel methodology utilizing Recurrent Neural Networks (RNNs) to classify Markovian and non-Markovian quantum processes, leveraging time series data derived from Choi states. The model exhibits exceptional accuracy, surpassing 95%, across diverse scenarios, encompassing dephasing and Pauli channels in an arbitrary basis, and generalized amplitude damping dynamics. Additionally, the developed model shows efficient forecasting capabilities for the analyzed time series data. These results suggest the potential of RNNs in discerning and predicting the Markovian nature of quantum processes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_3067540524
source ProQuest - Publicly Available Content Database
subjects Damping
Recurrent neural networks
Time series
title Detecting Markovianity of Quantum Processes via Recurrent Neural Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A01%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Detecting%20Markovianity%20of%20Quantum%20Processes%20via%20Recurrent%20Neural%20Networks&rft.jtitle=arXiv.org&rft.au=Angela%20Rosy%20Morgillo&rft.date=2024-06-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3067540524%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30675405243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3067540524&rft_id=info:pmid/&rfr_iscdi=true