Loading…

VedgeSat: An automated, open‐source toolkit for coastal change monitoring using satellite‐derived vegetation edges

Public satellite platforms offer regular observations for global coastal monitoring and climate change risk management strategies. Unfortunately, shoreline positions derived from satellite imagery, representing changes in intertidal topography, are noisy and subject to tidal bias that requires corre...

Full description

Saved in:
Bibliographic Details
Published in:Earth surface processes and landforms 2024-06, Vol.49 (8), p.2405-2423
Main Authors: Muir, Freya M. E., Hurst, Martin D., Richardson‐Foulger, Luke, Rennie, Alistair F., Naylor, Larissa A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a3115-e422e75e4cb0cba5e65a7bf7203a18f370db9ceb3eced3f5dcc840c7db6a66d3
container_end_page 2423
container_issue 8
container_start_page 2405
container_title Earth surface processes and landforms
container_volume 49
creator Muir, Freya M. E.
Hurst, Martin D.
Richardson‐Foulger, Luke
Rennie, Alistair F.
Naylor, Larissa A.
description Public satellite platforms offer regular observations for global coastal monitoring and climate change risk management strategies. Unfortunately, shoreline positions derived from satellite imagery, representing changes in intertidal topography, are noisy and subject to tidal bias that requires correction. The seaward‐most vegetation boundary reflects a change indicator which shifts on event–decadal timescales, and informs coastal practitioners of storm damage, sediment availability and coastal landform health. We present and validate a new open‐source tool VedgeSat for identifying vegetation edges (VEs) from high (3 m) and moderate (10–30 m) resolution satellite imagery. The methodology is based on the CoastSat toolkit, with streamlined image processing using cloud‐based data management via Google Earth Engine. Images are classified using a newly trained vegetation‐specific neural network, and VEs are extracted at subpixel level using dynamic Weighted Peaks thresholding. We performed validation against ground surveys and manual digitisation of aerial imagery across eroding and accreting open coasts and estuarine environments at a site in Scotland. Smaller‐than‐pixel vegetation boundary detection was achieved across 83% of Sentinel‐2 imagery (Root Mean Square Error of 9.3 m). An overall RMSE of 19.0 m was achieved across Landsat 5 & 8, Sentinel‐2 and PlanetScope images. Performance varied by coastal geomorphology, with highest accuracies across sandy open coasts owing to high spectral contrast and less false positives from intertidal vegetation. The VedgeSat tool can be readily applied in tandem with waterlines near‐globally, to support adaptation decisions with historic coastal trends across the whole shoreface, even in normally data‐scarce areas. We use open‐source satellite imagery via Google Earth Engine and an artificial neural network to automatically extract coastal vegetation edges. Using the open‐source Python software VedgeSat, coastal vegetation edges can be automatically extracted near globally for the last 40 years.
doi_str_mv 10.1002/esp.5835
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3067841284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067841284</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3115-e422e75e4cb0cba5e65a7bf7203a18f370db9ceb3eced3f5dcc840c7db6a66d3</originalsourceid><addsrcrecordid>eNp1kE1OwzAQRi0EEqUgcQRLbFiQYsdJnLCrUPmRKoHUiq3l2JPgksbBdoq64wickZOQUrZsZjZvvk_zEDqnZEIJia_Bd5M0Z-kBGlFSZFGRM36IRoQWPCoY48foxPsVIZQmeTFCmxfQNSxkuMHTFss-2LUMoK-w7aD9_vzytncKcLC2eTMBV9ZhZaUPssHqVbY14LVtTbDOtDXu_W76IaBpTIDhXIMzG9B4AzUEGYxt8a7Pn6KjSjYezv72GC3vZsvbh2j-dP94O51HklGaRpDEMfAUElUSVcoUslTysuIxYZLmFeNEl4WCkoECzapUK5UnRHFdZjLLNBuji31s5-x7Dz6I1fBPOzQKRjKeJzTOk4G63FPKWe8dVKJzZi3dVlAidlLFIFXspA5otEc_TAPbfzkxWzz_8j8SAX2v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067841284</pqid></control><display><type>article</type><title>VedgeSat: An automated, open‐source toolkit for coastal change monitoring using satellite‐derived vegetation edges</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Muir, Freya M. E. ; Hurst, Martin D. ; Richardson‐Foulger, Luke ; Rennie, Alistair F. ; Naylor, Larissa A.</creator><creatorcontrib>Muir, Freya M. E. ; Hurst, Martin D. ; Richardson‐Foulger, Luke ; Rennie, Alistair F. ; Naylor, Larissa A.</creatorcontrib><description>Public satellite platforms offer regular observations for global coastal monitoring and climate change risk management strategies. Unfortunately, shoreline positions derived from satellite imagery, representing changes in intertidal topography, are noisy and subject to tidal bias that requires correction. The seaward‐most vegetation boundary reflects a change indicator which shifts on event–decadal timescales, and informs coastal practitioners of storm damage, sediment availability and coastal landform health. We present and validate a new open‐source tool VedgeSat for identifying vegetation edges (VEs) from high (3 m) and moderate (10–30 m) resolution satellite imagery. The methodology is based on the CoastSat toolkit, with streamlined image processing using cloud‐based data management via Google Earth Engine. Images are classified using a newly trained vegetation‐specific neural network, and VEs are extracted at subpixel level using dynamic Weighted Peaks thresholding. We performed validation against ground surveys and manual digitisation of aerial imagery across eroding and accreting open coasts and estuarine environments at a site in Scotland. Smaller‐than‐pixel vegetation boundary detection was achieved across 83% of Sentinel‐2 imagery (Root Mean Square Error of 9.3 m). An overall RMSE of 19.0 m was achieved across Landsat 5 &amp; 8, Sentinel‐2 and PlanetScope images. Performance varied by coastal geomorphology, with highest accuracies across sandy open coasts owing to high spectral contrast and less false positives from intertidal vegetation. The VedgeSat tool can be readily applied in tandem with waterlines near‐globally, to support adaptation decisions with historic coastal trends across the whole shoreface, even in normally data‐scarce areas. We use open‐source satellite imagery via Google Earth Engine and an artificial neural network to automatically extract coastal vegetation edges. Using the open‐source Python software VedgeSat, coastal vegetation edges can be automatically extracted near globally for the last 40 years.</description><identifier>ISSN: 0197-9337</identifier><identifier>EISSN: 1096-9837</identifier><identifier>DOI: 10.1002/esp.5835</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Aerial surveys ; Brackishwater environment ; Climate change ; coastal ecology ; Coastal erosion ; Coastal geomorphology ; Coastal landforms ; Coastal storms ; Coastal zone management ; Coasts ; Data management ; Environmental monitoring ; Environmental risk ; Estuaries ; Estuarine environments ; Geomorphology ; Google Earth Engine ; image classification ; Image processing ; Landforms ; Landsat ; Landsat satellites ; Monitoring ; neural network ; Neural networks ; Pixels ; Planet ; Remote sensing ; Risk management ; Root-mean-square errors ; Satellite imagery ; Satellite observation ; Satellites ; Sentinel‐2 ; Storm damage ; Storms ; Toolkits ; Vegetation ; vegetation edge</subject><ispartof>Earth surface processes and landforms, 2024-06, Vol.49 (8), p.2405-2423</ispartof><rights>2024 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a3115-e422e75e4cb0cba5e65a7bf7203a18f370db9ceb3eced3f5dcc840c7db6a66d3</cites><orcidid>0009-0006-8496-8300 ; 0000-0002-4065-2674 ; 0000-0003-4702-2963 ; 0000-0002-9822-076X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Muir, Freya M. E.</creatorcontrib><creatorcontrib>Hurst, Martin D.</creatorcontrib><creatorcontrib>Richardson‐Foulger, Luke</creatorcontrib><creatorcontrib>Rennie, Alistair F.</creatorcontrib><creatorcontrib>Naylor, Larissa A.</creatorcontrib><title>VedgeSat: An automated, open‐source toolkit for coastal change monitoring using satellite‐derived vegetation edges</title><title>Earth surface processes and landforms</title><description>Public satellite platforms offer regular observations for global coastal monitoring and climate change risk management strategies. Unfortunately, shoreline positions derived from satellite imagery, representing changes in intertidal topography, are noisy and subject to tidal bias that requires correction. The seaward‐most vegetation boundary reflects a change indicator which shifts on event–decadal timescales, and informs coastal practitioners of storm damage, sediment availability and coastal landform health. We present and validate a new open‐source tool VedgeSat for identifying vegetation edges (VEs) from high (3 m) and moderate (10–30 m) resolution satellite imagery. The methodology is based on the CoastSat toolkit, with streamlined image processing using cloud‐based data management via Google Earth Engine. Images are classified using a newly trained vegetation‐specific neural network, and VEs are extracted at subpixel level using dynamic Weighted Peaks thresholding. We performed validation against ground surveys and manual digitisation of aerial imagery across eroding and accreting open coasts and estuarine environments at a site in Scotland. Smaller‐than‐pixel vegetation boundary detection was achieved across 83% of Sentinel‐2 imagery (Root Mean Square Error of 9.3 m). An overall RMSE of 19.0 m was achieved across Landsat 5 &amp; 8, Sentinel‐2 and PlanetScope images. Performance varied by coastal geomorphology, with highest accuracies across sandy open coasts owing to high spectral contrast and less false positives from intertidal vegetation. The VedgeSat tool can be readily applied in tandem with waterlines near‐globally, to support adaptation decisions with historic coastal trends across the whole shoreface, even in normally data‐scarce areas. We use open‐source satellite imagery via Google Earth Engine and an artificial neural network to automatically extract coastal vegetation edges. Using the open‐source Python software VedgeSat, coastal vegetation edges can be automatically extracted near globally for the last 40 years.</description><subject>Aerial surveys</subject><subject>Brackishwater environment</subject><subject>Climate change</subject><subject>coastal ecology</subject><subject>Coastal erosion</subject><subject>Coastal geomorphology</subject><subject>Coastal landforms</subject><subject>Coastal storms</subject><subject>Coastal zone management</subject><subject>Coasts</subject><subject>Data management</subject><subject>Environmental monitoring</subject><subject>Environmental risk</subject><subject>Estuaries</subject><subject>Estuarine environments</subject><subject>Geomorphology</subject><subject>Google Earth Engine</subject><subject>image classification</subject><subject>Image processing</subject><subject>Landforms</subject><subject>Landsat</subject><subject>Landsat satellites</subject><subject>Monitoring</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Pixels</subject><subject>Planet</subject><subject>Remote sensing</subject><subject>Risk management</subject><subject>Root-mean-square errors</subject><subject>Satellite imagery</subject><subject>Satellite observation</subject><subject>Satellites</subject><subject>Sentinel‐2</subject><subject>Storm damage</subject><subject>Storms</subject><subject>Toolkits</subject><subject>Vegetation</subject><subject>vegetation edge</subject><issn>0197-9337</issn><issn>1096-9837</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kE1OwzAQRi0EEqUgcQRLbFiQYsdJnLCrUPmRKoHUiq3l2JPgksbBdoq64wickZOQUrZsZjZvvk_zEDqnZEIJia_Bd5M0Z-kBGlFSZFGRM36IRoQWPCoY48foxPsVIZQmeTFCmxfQNSxkuMHTFss-2LUMoK-w7aD9_vzytncKcLC2eTMBV9ZhZaUPssHqVbY14LVtTbDOtDXu_W76IaBpTIDhXIMzG9B4AzUEGYxt8a7Pn6KjSjYezv72GC3vZsvbh2j-dP94O51HklGaRpDEMfAUElUSVcoUslTysuIxYZLmFeNEl4WCkoECzapUK5UnRHFdZjLLNBuji31s5-x7Dz6I1fBPOzQKRjKeJzTOk4G63FPKWe8dVKJzZi3dVlAidlLFIFXspA5otEc_TAPbfzkxWzz_8j8SAX2v</recordid><startdate>20240630</startdate><enddate>20240630</enddate><creator>Muir, Freya M. E.</creator><creator>Hurst, Martin D.</creator><creator>Richardson‐Foulger, Luke</creator><creator>Rennie, Alistair F.</creator><creator>Naylor, Larissa A.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><orcidid>https://orcid.org/0009-0006-8496-8300</orcidid><orcidid>https://orcid.org/0000-0002-4065-2674</orcidid><orcidid>https://orcid.org/0000-0003-4702-2963</orcidid><orcidid>https://orcid.org/0000-0002-9822-076X</orcidid></search><sort><creationdate>20240630</creationdate><title>VedgeSat: An automated, open‐source toolkit for coastal change monitoring using satellite‐derived vegetation edges</title><author>Muir, Freya M. E. ; Hurst, Martin D. ; Richardson‐Foulger, Luke ; Rennie, Alistair F. ; Naylor, Larissa A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3115-e422e75e4cb0cba5e65a7bf7203a18f370db9ceb3eced3f5dcc840c7db6a66d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerial surveys</topic><topic>Brackishwater environment</topic><topic>Climate change</topic><topic>coastal ecology</topic><topic>Coastal erosion</topic><topic>Coastal geomorphology</topic><topic>Coastal landforms</topic><topic>Coastal storms</topic><topic>Coastal zone management</topic><topic>Coasts</topic><topic>Data management</topic><topic>Environmental monitoring</topic><topic>Environmental risk</topic><topic>Estuaries</topic><topic>Estuarine environments</topic><topic>Geomorphology</topic><topic>Google Earth Engine</topic><topic>image classification</topic><topic>Image processing</topic><topic>Landforms</topic><topic>Landsat</topic><topic>Landsat satellites</topic><topic>Monitoring</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Pixels</topic><topic>Planet</topic><topic>Remote sensing</topic><topic>Risk management</topic><topic>Root-mean-square errors</topic><topic>Satellite imagery</topic><topic>Satellite observation</topic><topic>Satellites</topic><topic>Sentinel‐2</topic><topic>Storm damage</topic><topic>Storms</topic><topic>Toolkits</topic><topic>Vegetation</topic><topic>vegetation edge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muir, Freya M. E.</creatorcontrib><creatorcontrib>Hurst, Martin D.</creatorcontrib><creatorcontrib>Richardson‐Foulger, Luke</creatorcontrib><creatorcontrib>Rennie, Alistair F.</creatorcontrib><creatorcontrib>Naylor, Larissa A.</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Earth surface processes and landforms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muir, Freya M. E.</au><au>Hurst, Martin D.</au><au>Richardson‐Foulger, Luke</au><au>Rennie, Alistair F.</au><au>Naylor, Larissa A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VedgeSat: An automated, open‐source toolkit for coastal change monitoring using satellite‐derived vegetation edges</atitle><jtitle>Earth surface processes and landforms</jtitle><date>2024-06-30</date><risdate>2024</risdate><volume>49</volume><issue>8</issue><spage>2405</spage><epage>2423</epage><pages>2405-2423</pages><issn>0197-9337</issn><eissn>1096-9837</eissn><abstract>Public satellite platforms offer regular observations for global coastal monitoring and climate change risk management strategies. Unfortunately, shoreline positions derived from satellite imagery, representing changes in intertidal topography, are noisy and subject to tidal bias that requires correction. The seaward‐most vegetation boundary reflects a change indicator which shifts on event–decadal timescales, and informs coastal practitioners of storm damage, sediment availability and coastal landform health. We present and validate a new open‐source tool VedgeSat for identifying vegetation edges (VEs) from high (3 m) and moderate (10–30 m) resolution satellite imagery. The methodology is based on the CoastSat toolkit, with streamlined image processing using cloud‐based data management via Google Earth Engine. Images are classified using a newly trained vegetation‐specific neural network, and VEs are extracted at subpixel level using dynamic Weighted Peaks thresholding. We performed validation against ground surveys and manual digitisation of aerial imagery across eroding and accreting open coasts and estuarine environments at a site in Scotland. Smaller‐than‐pixel vegetation boundary detection was achieved across 83% of Sentinel‐2 imagery (Root Mean Square Error of 9.3 m). An overall RMSE of 19.0 m was achieved across Landsat 5 &amp; 8, Sentinel‐2 and PlanetScope images. Performance varied by coastal geomorphology, with highest accuracies across sandy open coasts owing to high spectral contrast and less false positives from intertidal vegetation. The VedgeSat tool can be readily applied in tandem with waterlines near‐globally, to support adaptation decisions with historic coastal trends across the whole shoreface, even in normally data‐scarce areas. We use open‐source satellite imagery via Google Earth Engine and an artificial neural network to automatically extract coastal vegetation edges. Using the open‐source Python software VedgeSat, coastal vegetation edges can be automatically extracted near globally for the last 40 years.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/esp.5835</doi><tpages>19</tpages><orcidid>https://orcid.org/0009-0006-8496-8300</orcidid><orcidid>https://orcid.org/0000-0002-4065-2674</orcidid><orcidid>https://orcid.org/0000-0003-4702-2963</orcidid><orcidid>https://orcid.org/0000-0002-9822-076X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0197-9337
ispartof Earth surface processes and landforms, 2024-06, Vol.49 (8), p.2405-2423
issn 0197-9337
1096-9837
language eng
recordid cdi_proquest_journals_3067841284
source Wiley-Blackwell Read & Publish Collection
subjects Aerial surveys
Brackishwater environment
Climate change
coastal ecology
Coastal erosion
Coastal geomorphology
Coastal landforms
Coastal storms
Coastal zone management
Coasts
Data management
Environmental monitoring
Environmental risk
Estuaries
Estuarine environments
Geomorphology
Google Earth Engine
image classification
Image processing
Landforms
Landsat
Landsat satellites
Monitoring
neural network
Neural networks
Pixels
Planet
Remote sensing
Risk management
Root-mean-square errors
Satellite imagery
Satellite observation
Satellites
Sentinel‐2
Storm damage
Storms
Toolkits
Vegetation
vegetation edge
title VedgeSat: An automated, open‐source toolkit for coastal change monitoring using satellite‐derived vegetation edges
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T15%3A17%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VedgeSat:%20An%20automated,%20open%E2%80%90source%20toolkit%20for%20coastal%20change%20monitoring%20using%20satellite%E2%80%90derived%20vegetation%20edges&rft.jtitle=Earth%20surface%20processes%20and%20landforms&rft.au=Muir,%20Freya%20M.%20E.&rft.date=2024-06-30&rft.volume=49&rft.issue=8&rft.spage=2405&rft.epage=2423&rft.pages=2405-2423&rft.issn=0197-9337&rft.eissn=1096-9837&rft_id=info:doi/10.1002/esp.5835&rft_dat=%3Cproquest_cross%3E3067841284%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a3115-e422e75e4cb0cba5e65a7bf7203a18f370db9ceb3eced3f5dcc840c7db6a66d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3067841284&rft_id=info:pmid/&rfr_iscdi=true