Loading…
Reduced titania nanorods and Ni–Mo–S catalysts for photoelectrocatalytic water treatment and hydrogen production coupled with desalination
[Display omitted] •A novel ternary hybrid photoelectrochemical process is presented.•Thermochemically reduced TiO2 nanorod arrays are developed for treatment of urea.•Ni-Mo-S composite electrocatalysts are developed for H2 production.•The photoanodic and cathodic processes are coupled with desalinat...
Saved in:
Published in: | Applied catalysis. B, Environmental Environmental, 2021-05, Vol.284, p.119745, Article 119745 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c334t-a4fdf941374706525948d110cb2f174e32e4a3c3b681e17fa510032014f051443 |
---|---|
cites | cdi_FETCH-LOGICAL-c334t-a4fdf941374706525948d110cb2f174e32e4a3c3b681e17fa510032014f051443 |
container_end_page | |
container_issue | |
container_start_page | 119745 |
container_title | Applied catalysis. B, Environmental |
container_volume | 284 |
creator | Kim, Seonghun Han, Dong Suk Park, Hyunwoong |
description | [Display omitted]
•A novel ternary hybrid photoelectrochemical process is presented.•Thermochemically reduced TiO2 nanorod arrays are developed for treatment of urea.•Ni-Mo-S composite electrocatalysts are developed for H2 production.•The photoanodic and cathodic processes are coupled with desalination.•The high efficiency ternary processes are achieved.
This study presents a ternary hybrid solar desalination process coupled with photoelectrocatalytic water treatment and H2 production in a single device. The desalination of brackish water in the desalination cell is initiated via photoinduced charge generation with a thermochemically reduced TiO2 nanorod array photoanode. The chlorides transferred to the neighboring anolyte at ion-transport efficiency of ∼100% are photoelectrochemically transformed into reactive chlorine species responsible for the decomposition of urea into nitrate in the anolyte. Simultaneously, the H2 production with a Ni–Mo–S (Ni2S3/MoS2) composite catalyst grown onto porous Ni substrate is achieved at Faradaic efficiency of ∼90% in the catholyte concentrated with desalted Na+. Regardless of the operation condition, the H2 energy contributes to the reduction in the energy consumption for desalination by 25%–30%. The overall ternary hybrid process is understood systematically, and the physiochemical properties and electrochemical behavior of the Ni–Mo–S catalysts are examined. |
doi_str_mv | 10.1016/j.apcatb.2020.119745 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3068117327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337320311620</els_id><sourcerecordid>3068117327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-a4fdf941374706525948d110cb2f174e32e4a3c3b681e17fa510032014f051443</originalsourceid><addsrcrecordid>eNp9kMFuEzEQhq0KJELbN-BgifOmtscbby5IVQUtUgtSac-WY882jrb21vZS5cYTcOkb8iR1WM5cxtLM_P8__gj5wNmSM7462y3NaE3ZLAUTtcXXSrZHZME7BQ10HbwhC7YWqwZAwTvyPucdY0yA6Bbk9y26yaKjxRcTvKHBhJiiy9QER7_5P79ebmItP2gNMMM-l0z7mOi4jSXigLakOE-Kt_TZFEy0JDTlEUP567HduxQfMNCx2k62-BiojdM41NBnX7bUYTaDD-YwOSFvezNkPP33HpP7L5_vLq6a6--XXy_OrxsLIEtjZO_6teSgpGKrVrRr2TnOmd2IniuJIFAasLBZdRy56k3LGQPBuOxZy6WEY_Jx9q1HPU2Yi97FKYUaqYFVEVcgVN2S85ZNMeeEvR6TfzRprznTB_J6p2fy-kBez-Sr7NMsw_qDnx6TztZjqJR9qsC0i_7_Bq-WAJI3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068117327</pqid></control><display><type>article</type><title>Reduced titania nanorods and Ni–Mo–S catalysts for photoelectrocatalytic water treatment and hydrogen production coupled with desalination</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Kim, Seonghun ; Han, Dong Suk ; Park, Hyunwoong</creator><creatorcontrib>Kim, Seonghun ; Han, Dong Suk ; Park, Hyunwoong</creatorcontrib><description>[Display omitted]
•A novel ternary hybrid photoelectrochemical process is presented.•Thermochemically reduced TiO2 nanorod arrays are developed for treatment of urea.•Ni-Mo-S composite electrocatalysts are developed for H2 production.•The photoanodic and cathodic processes are coupled with desalination.•The high efficiency ternary processes are achieved.
This study presents a ternary hybrid solar desalination process coupled with photoelectrocatalytic water treatment and H2 production in a single device. The desalination of brackish water in the desalination cell is initiated via photoinduced charge generation with a thermochemically reduced TiO2 nanorod array photoanode. The chlorides transferred to the neighboring anolyte at ion-transport efficiency of ∼100% are photoelectrochemically transformed into reactive chlorine species responsible for the decomposition of urea into nitrate in the anolyte. Simultaneously, the H2 production with a Ni–Mo–S (Ni2S3/MoS2) composite catalyst grown onto porous Ni substrate is achieved at Faradaic efficiency of ∼90% in the catholyte concentrated with desalted Na+. Regardless of the operation condition, the H2 energy contributes to the reduction in the energy consumption for desalination by 25%–30%. The overall ternary hybrid process is understood systematically, and the physiochemical properties and electrochemical behavior of the Ni–Mo–S catalysts are examined.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2020.119745</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anolytes ; Brackish water ; Brackish water desalination ; Catalysts ; Chlorine ; Chlorine oxidation reaction ; Decomposition reactions ; Desalination ; Electrocatalyst ; Electrochemical analysis ; Electrochemistry ; Energy consumption ; Hydrogen evolution reaction ; Hydrogen production ; Molybdenum ; Molybdenum disulfide ; Nanorods ; Nickel ; Photoelectrocatalyst ; Physiochemistry ; Substrates ; Titanium dioxide ; Urea ; Water treatment</subject><ispartof>Applied catalysis. B, Environmental, 2021-05, Vol.284, p.119745, Article 119745</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 5, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-a4fdf941374706525948d110cb2f174e32e4a3c3b681e17fa510032014f051443</citedby><cites>FETCH-LOGICAL-c334t-a4fdf941374706525948d110cb2f174e32e4a3c3b681e17fa510032014f051443</cites><orcidid>0000-0002-4938-6907</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kim, Seonghun</creatorcontrib><creatorcontrib>Han, Dong Suk</creatorcontrib><creatorcontrib>Park, Hyunwoong</creatorcontrib><title>Reduced titania nanorods and Ni–Mo–S catalysts for photoelectrocatalytic water treatment and hydrogen production coupled with desalination</title><title>Applied catalysis. B, Environmental</title><description>[Display omitted]
•A novel ternary hybrid photoelectrochemical process is presented.•Thermochemically reduced TiO2 nanorod arrays are developed for treatment of urea.•Ni-Mo-S composite electrocatalysts are developed for H2 production.•The photoanodic and cathodic processes are coupled with desalination.•The high efficiency ternary processes are achieved.
This study presents a ternary hybrid solar desalination process coupled with photoelectrocatalytic water treatment and H2 production in a single device. The desalination of brackish water in the desalination cell is initiated via photoinduced charge generation with a thermochemically reduced TiO2 nanorod array photoanode. The chlorides transferred to the neighboring anolyte at ion-transport efficiency of ∼100% are photoelectrochemically transformed into reactive chlorine species responsible for the decomposition of urea into nitrate in the anolyte. Simultaneously, the H2 production with a Ni–Mo–S (Ni2S3/MoS2) composite catalyst grown onto porous Ni substrate is achieved at Faradaic efficiency of ∼90% in the catholyte concentrated with desalted Na+. Regardless of the operation condition, the H2 energy contributes to the reduction in the energy consumption for desalination by 25%–30%. The overall ternary hybrid process is understood systematically, and the physiochemical properties and electrochemical behavior of the Ni–Mo–S catalysts are examined.</description><subject>Anolytes</subject><subject>Brackish water</subject><subject>Brackish water desalination</subject><subject>Catalysts</subject><subject>Chlorine</subject><subject>Chlorine oxidation reaction</subject><subject>Decomposition reactions</subject><subject>Desalination</subject><subject>Electrocatalyst</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Energy consumption</subject><subject>Hydrogen evolution reaction</subject><subject>Hydrogen production</subject><subject>Molybdenum</subject><subject>Molybdenum disulfide</subject><subject>Nanorods</subject><subject>Nickel</subject><subject>Photoelectrocatalyst</subject><subject>Physiochemistry</subject><subject>Substrates</subject><subject>Titanium dioxide</subject><subject>Urea</subject><subject>Water treatment</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFuEzEQhq0KJELbN-BgifOmtscbby5IVQUtUgtSac-WY882jrb21vZS5cYTcOkb8iR1WM5cxtLM_P8__gj5wNmSM7462y3NaE3ZLAUTtcXXSrZHZME7BQ10HbwhC7YWqwZAwTvyPucdY0yA6Bbk9y26yaKjxRcTvKHBhJiiy9QER7_5P79ebmItP2gNMMM-l0z7mOi4jSXigLakOE-Kt_TZFEy0JDTlEUP567HduxQfMNCx2k62-BiojdM41NBnX7bUYTaDD-YwOSFvezNkPP33HpP7L5_vLq6a6--XXy_OrxsLIEtjZO_6teSgpGKrVrRr2TnOmd2IniuJIFAasLBZdRy56k3LGQPBuOxZy6WEY_Jx9q1HPU2Yi97FKYUaqYFVEVcgVN2S85ZNMeeEvR6TfzRprznTB_J6p2fy-kBez-Sr7NMsw_qDnx6TztZjqJR9qsC0i_7_Bq-WAJI3</recordid><startdate>20210505</startdate><enddate>20210505</enddate><creator>Kim, Seonghun</creator><creator>Han, Dong Suk</creator><creator>Park, Hyunwoong</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-4938-6907</orcidid></search><sort><creationdate>20210505</creationdate><title>Reduced titania nanorods and Ni–Mo–S catalysts for photoelectrocatalytic water treatment and hydrogen production coupled with desalination</title><author>Kim, Seonghun ; Han, Dong Suk ; Park, Hyunwoong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-a4fdf941374706525948d110cb2f174e32e4a3c3b681e17fa510032014f051443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anolytes</topic><topic>Brackish water</topic><topic>Brackish water desalination</topic><topic>Catalysts</topic><topic>Chlorine</topic><topic>Chlorine oxidation reaction</topic><topic>Decomposition reactions</topic><topic>Desalination</topic><topic>Electrocatalyst</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Energy consumption</topic><topic>Hydrogen evolution reaction</topic><topic>Hydrogen production</topic><topic>Molybdenum</topic><topic>Molybdenum disulfide</topic><topic>Nanorods</topic><topic>Nickel</topic><topic>Photoelectrocatalyst</topic><topic>Physiochemistry</topic><topic>Substrates</topic><topic>Titanium dioxide</topic><topic>Urea</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Seonghun</creatorcontrib><creatorcontrib>Han, Dong Suk</creatorcontrib><creatorcontrib>Park, Hyunwoong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Seonghun</au><au>Han, Dong Suk</au><au>Park, Hyunwoong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduced titania nanorods and Ni–Mo–S catalysts for photoelectrocatalytic water treatment and hydrogen production coupled with desalination</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2021-05-05</date><risdate>2021</risdate><volume>284</volume><spage>119745</spage><pages>119745-</pages><artnum>119745</artnum><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>[Display omitted]
•A novel ternary hybrid photoelectrochemical process is presented.•Thermochemically reduced TiO2 nanorod arrays are developed for treatment of urea.•Ni-Mo-S composite electrocatalysts are developed for H2 production.•The photoanodic and cathodic processes are coupled with desalination.•The high efficiency ternary processes are achieved.
This study presents a ternary hybrid solar desalination process coupled with photoelectrocatalytic water treatment and H2 production in a single device. The desalination of brackish water in the desalination cell is initiated via photoinduced charge generation with a thermochemically reduced TiO2 nanorod array photoanode. The chlorides transferred to the neighboring anolyte at ion-transport efficiency of ∼100% are photoelectrochemically transformed into reactive chlorine species responsible for the decomposition of urea into nitrate in the anolyte. Simultaneously, the H2 production with a Ni–Mo–S (Ni2S3/MoS2) composite catalyst grown onto porous Ni substrate is achieved at Faradaic efficiency of ∼90% in the catholyte concentrated with desalted Na+. Regardless of the operation condition, the H2 energy contributes to the reduction in the energy consumption for desalination by 25%–30%. The overall ternary hybrid process is understood systematically, and the physiochemical properties and electrochemical behavior of the Ni–Mo–S catalysts are examined.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2020.119745</doi><orcidid>https://orcid.org/0000-0002-4938-6907</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-3373 |
ispartof | Applied catalysis. B, Environmental, 2021-05, Vol.284, p.119745, Article 119745 |
issn | 0926-3373 1873-3883 |
language | eng |
recordid | cdi_proquest_journals_3068117327 |
source | Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Anolytes Brackish water Brackish water desalination Catalysts Chlorine Chlorine oxidation reaction Decomposition reactions Desalination Electrocatalyst Electrochemical analysis Electrochemistry Energy consumption Hydrogen evolution reaction Hydrogen production Molybdenum Molybdenum disulfide Nanorods Nickel Photoelectrocatalyst Physiochemistry Substrates Titanium dioxide Urea Water treatment |
title | Reduced titania nanorods and Ni–Mo–S catalysts for photoelectrocatalytic water treatment and hydrogen production coupled with desalination |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T10%3A10%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduced%20titania%20nanorods%20and%20Ni%E2%80%93Mo%E2%80%93S%20catalysts%20for%20photoelectrocatalytic%20water%20treatment%20and%20hydrogen%20production%20coupled%20with%20desalination&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Kim,%20Seonghun&rft.date=2021-05-05&rft.volume=284&rft.spage=119745&rft.pages=119745-&rft.artnum=119745&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2020.119745&rft_dat=%3Cproquest_cross%3E3068117327%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-a4fdf941374706525948d110cb2f174e32e4a3c3b681e17fa510032014f051443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3068117327&rft_id=info:pmid/&rfr_iscdi=true |