Loading…

Reduced titania nanorods and Ni–Mo–S catalysts for photoelectrocatalytic water treatment and hydrogen production coupled with desalination

[Display omitted] •A novel ternary hybrid photoelectrochemical process is presented.•Thermochemically reduced TiO2 nanorod arrays are developed for treatment of urea.•Ni-Mo-S composite electrocatalysts are developed for H2 production.•The photoanodic and cathodic processes are coupled with desalinat...

Full description

Saved in:
Bibliographic Details
Published in:Applied catalysis. B, Environmental Environmental, 2021-05, Vol.284, p.119745, Article 119745
Main Authors: Kim, Seonghun, Han, Dong Suk, Park, Hyunwoong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-a4fdf941374706525948d110cb2f174e32e4a3c3b681e17fa510032014f051443
cites cdi_FETCH-LOGICAL-c334t-a4fdf941374706525948d110cb2f174e32e4a3c3b681e17fa510032014f051443
container_end_page
container_issue
container_start_page 119745
container_title Applied catalysis. B, Environmental
container_volume 284
creator Kim, Seonghun
Han, Dong Suk
Park, Hyunwoong
description [Display omitted] •A novel ternary hybrid photoelectrochemical process is presented.•Thermochemically reduced TiO2 nanorod arrays are developed for treatment of urea.•Ni-Mo-S composite electrocatalysts are developed for H2 production.•The photoanodic and cathodic processes are coupled with desalination.•The high efficiency ternary processes are achieved. This study presents a ternary hybrid solar desalination process coupled with photoelectrocatalytic water treatment and H2 production in a single device. The desalination of brackish water in the desalination cell is initiated via photoinduced charge generation with a thermochemically reduced TiO2 nanorod array photoanode. The chlorides transferred to the neighboring anolyte at ion-transport efficiency of ∼100% are photoelectrochemically transformed into reactive chlorine species responsible for the decomposition of urea into nitrate in the anolyte. Simultaneously, the H2 production with a Ni–Mo–S (Ni2S3/MoS2) composite catalyst grown onto porous Ni substrate is achieved at Faradaic efficiency of ∼90% in the catholyte concentrated with desalted Na+. Regardless of the operation condition, the H2 energy contributes to the reduction in the energy consumption for desalination by 25%–30%. The overall ternary hybrid process is understood systematically, and the physiochemical properties and electrochemical behavior of the Ni–Mo–S catalysts are examined.
doi_str_mv 10.1016/j.apcatb.2020.119745
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3068117327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337320311620</els_id><sourcerecordid>3068117327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-a4fdf941374706525948d110cb2f174e32e4a3c3b681e17fa510032014f051443</originalsourceid><addsrcrecordid>eNp9kMFuEzEQhq0KJELbN-BgifOmtscbby5IVQUtUgtSac-WY882jrb21vZS5cYTcOkb8iR1WM5cxtLM_P8__gj5wNmSM7462y3NaE3ZLAUTtcXXSrZHZME7BQ10HbwhC7YWqwZAwTvyPucdY0yA6Bbk9y26yaKjxRcTvKHBhJiiy9QER7_5P79ebmItP2gNMMM-l0z7mOi4jSXigLakOE-Kt_TZFEy0JDTlEUP567HduxQfMNCx2k62-BiojdM41NBnX7bUYTaDD-YwOSFvezNkPP33HpP7L5_vLq6a6--XXy_OrxsLIEtjZO_6teSgpGKrVrRr2TnOmd2IniuJIFAasLBZdRy56k3LGQPBuOxZy6WEY_Jx9q1HPU2Yi97FKYUaqYFVEVcgVN2S85ZNMeeEvR6TfzRprznTB_J6p2fy-kBez-Sr7NMsw_qDnx6TztZjqJR9qsC0i_7_Bq-WAJI3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068117327</pqid></control><display><type>article</type><title>Reduced titania nanorods and Ni–Mo–S catalysts for photoelectrocatalytic water treatment and hydrogen production coupled with desalination</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Kim, Seonghun ; Han, Dong Suk ; Park, Hyunwoong</creator><creatorcontrib>Kim, Seonghun ; Han, Dong Suk ; Park, Hyunwoong</creatorcontrib><description>[Display omitted] •A novel ternary hybrid photoelectrochemical process is presented.•Thermochemically reduced TiO2 nanorod arrays are developed for treatment of urea.•Ni-Mo-S composite electrocatalysts are developed for H2 production.•The photoanodic and cathodic processes are coupled with desalination.•The high efficiency ternary processes are achieved. This study presents a ternary hybrid solar desalination process coupled with photoelectrocatalytic water treatment and H2 production in a single device. The desalination of brackish water in the desalination cell is initiated via photoinduced charge generation with a thermochemically reduced TiO2 nanorod array photoanode. The chlorides transferred to the neighboring anolyte at ion-transport efficiency of ∼100% are photoelectrochemically transformed into reactive chlorine species responsible for the decomposition of urea into nitrate in the anolyte. Simultaneously, the H2 production with a Ni–Mo–S (Ni2S3/MoS2) composite catalyst grown onto porous Ni substrate is achieved at Faradaic efficiency of ∼90% in the catholyte concentrated with desalted Na+. Regardless of the operation condition, the H2 energy contributes to the reduction in the energy consumption for desalination by 25%–30%. The overall ternary hybrid process is understood systematically, and the physiochemical properties and electrochemical behavior of the Ni–Mo–S catalysts are examined.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2020.119745</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anolytes ; Brackish water ; Brackish water desalination ; Catalysts ; Chlorine ; Chlorine oxidation reaction ; Decomposition reactions ; Desalination ; Electrocatalyst ; Electrochemical analysis ; Electrochemistry ; Energy consumption ; Hydrogen evolution reaction ; Hydrogen production ; Molybdenum ; Molybdenum disulfide ; Nanorods ; Nickel ; Photoelectrocatalyst ; Physiochemistry ; Substrates ; Titanium dioxide ; Urea ; Water treatment</subject><ispartof>Applied catalysis. B, Environmental, 2021-05, Vol.284, p.119745, Article 119745</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 5, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-a4fdf941374706525948d110cb2f174e32e4a3c3b681e17fa510032014f051443</citedby><cites>FETCH-LOGICAL-c334t-a4fdf941374706525948d110cb2f174e32e4a3c3b681e17fa510032014f051443</cites><orcidid>0000-0002-4938-6907</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kim, Seonghun</creatorcontrib><creatorcontrib>Han, Dong Suk</creatorcontrib><creatorcontrib>Park, Hyunwoong</creatorcontrib><title>Reduced titania nanorods and Ni–Mo–S catalysts for photoelectrocatalytic water treatment and hydrogen production coupled with desalination</title><title>Applied catalysis. B, Environmental</title><description>[Display omitted] •A novel ternary hybrid photoelectrochemical process is presented.•Thermochemically reduced TiO2 nanorod arrays are developed for treatment of urea.•Ni-Mo-S composite electrocatalysts are developed for H2 production.•The photoanodic and cathodic processes are coupled with desalination.•The high efficiency ternary processes are achieved. This study presents a ternary hybrid solar desalination process coupled with photoelectrocatalytic water treatment and H2 production in a single device. The desalination of brackish water in the desalination cell is initiated via photoinduced charge generation with a thermochemically reduced TiO2 nanorod array photoanode. The chlorides transferred to the neighboring anolyte at ion-transport efficiency of ∼100% are photoelectrochemically transformed into reactive chlorine species responsible for the decomposition of urea into nitrate in the anolyte. Simultaneously, the H2 production with a Ni–Mo–S (Ni2S3/MoS2) composite catalyst grown onto porous Ni substrate is achieved at Faradaic efficiency of ∼90% in the catholyte concentrated with desalted Na+. Regardless of the operation condition, the H2 energy contributes to the reduction in the energy consumption for desalination by 25%–30%. The overall ternary hybrid process is understood systematically, and the physiochemical properties and electrochemical behavior of the Ni–Mo–S catalysts are examined.</description><subject>Anolytes</subject><subject>Brackish water</subject><subject>Brackish water desalination</subject><subject>Catalysts</subject><subject>Chlorine</subject><subject>Chlorine oxidation reaction</subject><subject>Decomposition reactions</subject><subject>Desalination</subject><subject>Electrocatalyst</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Energy consumption</subject><subject>Hydrogen evolution reaction</subject><subject>Hydrogen production</subject><subject>Molybdenum</subject><subject>Molybdenum disulfide</subject><subject>Nanorods</subject><subject>Nickel</subject><subject>Photoelectrocatalyst</subject><subject>Physiochemistry</subject><subject>Substrates</subject><subject>Titanium dioxide</subject><subject>Urea</subject><subject>Water treatment</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFuEzEQhq0KJELbN-BgifOmtscbby5IVQUtUgtSac-WY882jrb21vZS5cYTcOkb8iR1WM5cxtLM_P8__gj5wNmSM7462y3NaE3ZLAUTtcXXSrZHZME7BQ10HbwhC7YWqwZAwTvyPucdY0yA6Bbk9y26yaKjxRcTvKHBhJiiy9QER7_5P79ebmItP2gNMMM-l0z7mOi4jSXigLakOE-Kt_TZFEy0JDTlEUP567HduxQfMNCx2k62-BiojdM41NBnX7bUYTaDD-YwOSFvezNkPP33HpP7L5_vLq6a6--XXy_OrxsLIEtjZO_6teSgpGKrVrRr2TnOmd2IniuJIFAasLBZdRy56k3LGQPBuOxZy6WEY_Jx9q1HPU2Yi97FKYUaqYFVEVcgVN2S85ZNMeeEvR6TfzRprznTB_J6p2fy-kBez-Sr7NMsw_qDnx6TztZjqJR9qsC0i_7_Bq-WAJI3</recordid><startdate>20210505</startdate><enddate>20210505</enddate><creator>Kim, Seonghun</creator><creator>Han, Dong Suk</creator><creator>Park, Hyunwoong</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-4938-6907</orcidid></search><sort><creationdate>20210505</creationdate><title>Reduced titania nanorods and Ni–Mo–S catalysts for photoelectrocatalytic water treatment and hydrogen production coupled with desalination</title><author>Kim, Seonghun ; Han, Dong Suk ; Park, Hyunwoong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-a4fdf941374706525948d110cb2f174e32e4a3c3b681e17fa510032014f051443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anolytes</topic><topic>Brackish water</topic><topic>Brackish water desalination</topic><topic>Catalysts</topic><topic>Chlorine</topic><topic>Chlorine oxidation reaction</topic><topic>Decomposition reactions</topic><topic>Desalination</topic><topic>Electrocatalyst</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Energy consumption</topic><topic>Hydrogen evolution reaction</topic><topic>Hydrogen production</topic><topic>Molybdenum</topic><topic>Molybdenum disulfide</topic><topic>Nanorods</topic><topic>Nickel</topic><topic>Photoelectrocatalyst</topic><topic>Physiochemistry</topic><topic>Substrates</topic><topic>Titanium dioxide</topic><topic>Urea</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Seonghun</creatorcontrib><creatorcontrib>Han, Dong Suk</creatorcontrib><creatorcontrib>Park, Hyunwoong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Seonghun</au><au>Han, Dong Suk</au><au>Park, Hyunwoong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduced titania nanorods and Ni–Mo–S catalysts for photoelectrocatalytic water treatment and hydrogen production coupled with desalination</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2021-05-05</date><risdate>2021</risdate><volume>284</volume><spage>119745</spage><pages>119745-</pages><artnum>119745</artnum><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>[Display omitted] •A novel ternary hybrid photoelectrochemical process is presented.•Thermochemically reduced TiO2 nanorod arrays are developed for treatment of urea.•Ni-Mo-S composite electrocatalysts are developed for H2 production.•The photoanodic and cathodic processes are coupled with desalination.•The high efficiency ternary processes are achieved. This study presents a ternary hybrid solar desalination process coupled with photoelectrocatalytic water treatment and H2 production in a single device. The desalination of brackish water in the desalination cell is initiated via photoinduced charge generation with a thermochemically reduced TiO2 nanorod array photoanode. The chlorides transferred to the neighboring anolyte at ion-transport efficiency of ∼100% are photoelectrochemically transformed into reactive chlorine species responsible for the decomposition of urea into nitrate in the anolyte. Simultaneously, the H2 production with a Ni–Mo–S (Ni2S3/MoS2) composite catalyst grown onto porous Ni substrate is achieved at Faradaic efficiency of ∼90% in the catholyte concentrated with desalted Na+. Regardless of the operation condition, the H2 energy contributes to the reduction in the energy consumption for desalination by 25%–30%. The overall ternary hybrid process is understood systematically, and the physiochemical properties and electrochemical behavior of the Ni–Mo–S catalysts are examined.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2020.119745</doi><orcidid>https://orcid.org/0000-0002-4938-6907</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0926-3373
ispartof Applied catalysis. B, Environmental, 2021-05, Vol.284, p.119745, Article 119745
issn 0926-3373
1873-3883
language eng
recordid cdi_proquest_journals_3068117327
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Anolytes
Brackish water
Brackish water desalination
Catalysts
Chlorine
Chlorine oxidation reaction
Decomposition reactions
Desalination
Electrocatalyst
Electrochemical analysis
Electrochemistry
Energy consumption
Hydrogen evolution reaction
Hydrogen production
Molybdenum
Molybdenum disulfide
Nanorods
Nickel
Photoelectrocatalyst
Physiochemistry
Substrates
Titanium dioxide
Urea
Water treatment
title Reduced titania nanorods and Ni–Mo–S catalysts for photoelectrocatalytic water treatment and hydrogen production coupled with desalination
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T10%3A10%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduced%20titania%20nanorods%20and%20Ni%E2%80%93Mo%E2%80%93S%20catalysts%20for%20photoelectrocatalytic%20water%20treatment%20and%20hydrogen%20production%20coupled%20with%20desalination&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Kim,%20Seonghun&rft.date=2021-05-05&rft.volume=284&rft.spage=119745&rft.pages=119745-&rft.artnum=119745&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2020.119745&rft_dat=%3Cproquest_cross%3E3068117327%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-a4fdf941374706525948d110cb2f174e32e4a3c3b681e17fa510032014f051443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3068117327&rft_id=info:pmid/&rfr_iscdi=true