Loading…
Smart Memory: Deep Learning Acceleration in 3D-Stacked Memories
Processing-in-memory (PIM) is the most promising paradigm to address the bandwidth bottleneck in deep neural network (DNN) accelerators. However, the algorithmic and dataflow structure of DNNs still necessitates moving a large amount of data across banks inside the memory device to bring input data...
Saved in:
Published in: | IEEE computer architecture letters 2024-01, Vol.23 (1), p.137-141 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c245t-efb745a301f56e775443759540352aa7fe853bbb98a51db48360906def7e39163 |
container_end_page | 141 |
container_issue | 1 |
container_start_page | 137 |
container_title | IEEE computer architecture letters |
container_volume | 23 |
creator | Rezaei, Seyyed Hossein SeyyedAghaei Moghaddam, Parham Zilouchian Modarressi, Mehdi |
description | Processing-in-memory (PIM) is the most promising paradigm to address the bandwidth bottleneck in deep neural network (DNN) accelerators. However, the algorithmic and dataflow structure of DNNs still necessitates moving a large amount of data across banks inside the memory device to bring input data and their corresponding model parameters together, negatively shifting part of the bandwidth bottleneck to the in-memory data communication infrastructure. To alleviate this bottleneck, we present Smart Memory , a highly parallel in-memory DNN accelerator for 3D memories that benefits from a scalable high-bandwidth in-memory network. Whereas the existing PIM designs implement the compute units and network-on-chip on the logic die of the underlying 3D memory, in Smart Memory the computation and data transmission tasks are distributed across the memory banks. To this end, each memory bank is equipped with (1) a very simple processing unit to run neural networks, and (2) a circuit-switched router to interconnect memory banks by a 3D network-on-memory. Our evaluation shows 44% average performance improvement over state-of-the-art in-memory DNN accelerators. |
doi_str_mv | 10.1109/LCA.2023.3287976 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3068175111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10198388</ieee_id><sourcerecordid>3068175111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-efb745a301f56e775443759540352aa7fe853bbb98a51db48360906def7e39163</originalsourceid><addsrcrecordid>eNpNkLtOw0AQRVcIJEKgp6CwRO2w49knDYoSXpIRRaBerZ0xckjssOsU-XscOUJUM8U9dzSHsWvgEwBu7_LZdJLxDCeYGW21OmEjkFKliitx-rdLdc4uYlxxLhQaMWIPi40PXfJGmzbs75M50TbJyYembr6SaVnSmoLv6rZJ6ibBebrofPlNywGoKV6ys8qvI10d55h9Pj1-zF7S_P35dTbN0zITskupKrSQHjlUUpHWUgjU0krBUWbe64qMxKIorPESloUwqLjlakmVJrSgcMxuh95taH92FDu3aneh6U865MqAlgDQp_iQKkMbY6DKbUPdP7h3wN1Bk-s1uYMmd9TUIzcDUhPRvzhYg8bgLxM9YOY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068175111</pqid></control><display><type>article</type><title>Smart Memory: Deep Learning Acceleration in 3D-Stacked Memories</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Rezaei, Seyyed Hossein SeyyedAghaei ; Moghaddam, Parham Zilouchian ; Modarressi, Mehdi</creator><creatorcontrib>Rezaei, Seyyed Hossein SeyyedAghaei ; Moghaddam, Parham Zilouchian ; Modarressi, Mehdi</creatorcontrib><description>Processing-in-memory (PIM) is the most promising paradigm to address the bandwidth bottleneck in deep neural network (DNN) accelerators. However, the algorithmic and dataflow structure of DNNs still necessitates moving a large amount of data across banks inside the memory device to bring input data and their corresponding model parameters together, negatively shifting part of the bandwidth bottleneck to the in-memory data communication infrastructure. To alleviate this bottleneck, we present Smart Memory , a highly parallel in-memory DNN accelerator for 3D memories that benefits from a scalable high-bandwidth in-memory network. Whereas the existing PIM designs implement the compute units and network-on-chip on the logic die of the underlying 3D memory, in Smart Memory the computation and data transmission tasks are distributed across the memory banks. To this end, each memory bank is equipped with (1) a very simple processing unit to run neural networks, and (2) a circuit-switched router to interconnect memory banks by a 3D network-on-memory. Our evaluation shows 44% average performance improvement over state-of-the-art in-memory DNN accelerators.</description><identifier>ISSN: 1556-6056</identifier><identifier>EISSN: 1556-6064</identifier><identifier>DOI: 10.1109/LCA.2023.3287976</identifier><identifier>CODEN: ICALC3</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3D-stacked memory ; Accelerators ; Artificial neural networks ; Bandwidth ; Bandwidths ; Bottlenecks ; Computer architecture ; Data communication ; Data transmission ; deep learning accelerator ; Distributed memory ; Machine learning ; Memory devices ; Memory management ; Network-on-memory ; Neural networks ; processing-in-memory ; Random access memory ; Switches ; System on chip ; Three-dimensional displays</subject><ispartof>IEEE computer architecture letters, 2024-01, Vol.23 (1), p.137-141</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-efb745a301f56e775443759540352aa7fe853bbb98a51db48360906def7e39163</cites><orcidid>0009-0009-3144-3078 ; 0000-0002-6310-8954 ; 0000-0002-4117-7609</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10198388$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Rezaei, Seyyed Hossein SeyyedAghaei</creatorcontrib><creatorcontrib>Moghaddam, Parham Zilouchian</creatorcontrib><creatorcontrib>Modarressi, Mehdi</creatorcontrib><title>Smart Memory: Deep Learning Acceleration in 3D-Stacked Memories</title><title>IEEE computer architecture letters</title><addtitle>LCA</addtitle><description>Processing-in-memory (PIM) is the most promising paradigm to address the bandwidth bottleneck in deep neural network (DNN) accelerators. However, the algorithmic and dataflow structure of DNNs still necessitates moving a large amount of data across banks inside the memory device to bring input data and their corresponding model parameters together, negatively shifting part of the bandwidth bottleneck to the in-memory data communication infrastructure. To alleviate this bottleneck, we present Smart Memory , a highly parallel in-memory DNN accelerator for 3D memories that benefits from a scalable high-bandwidth in-memory network. Whereas the existing PIM designs implement the compute units and network-on-chip on the logic die of the underlying 3D memory, in Smart Memory the computation and data transmission tasks are distributed across the memory banks. To this end, each memory bank is equipped with (1) a very simple processing unit to run neural networks, and (2) a circuit-switched router to interconnect memory banks by a 3D network-on-memory. Our evaluation shows 44% average performance improvement over state-of-the-art in-memory DNN accelerators.</description><subject>3D-stacked memory</subject><subject>Accelerators</subject><subject>Artificial neural networks</subject><subject>Bandwidth</subject><subject>Bandwidths</subject><subject>Bottlenecks</subject><subject>Computer architecture</subject><subject>Data communication</subject><subject>Data transmission</subject><subject>deep learning accelerator</subject><subject>Distributed memory</subject><subject>Machine learning</subject><subject>Memory devices</subject><subject>Memory management</subject><subject>Network-on-memory</subject><subject>Neural networks</subject><subject>processing-in-memory</subject><subject>Random access memory</subject><subject>Switches</subject><subject>System on chip</subject><subject>Three-dimensional displays</subject><issn>1556-6056</issn><issn>1556-6064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkLtOw0AQRVcIJEKgp6CwRO2w49knDYoSXpIRRaBerZ0xckjssOsU-XscOUJUM8U9dzSHsWvgEwBu7_LZdJLxDCeYGW21OmEjkFKliitx-rdLdc4uYlxxLhQaMWIPi40PXfJGmzbs75M50TbJyYembr6SaVnSmoLv6rZJ6ibBebrofPlNywGoKV6ys8qvI10d55h9Pj1-zF7S_P35dTbN0zITskupKrSQHjlUUpHWUgjU0krBUWbe64qMxKIorPESloUwqLjlakmVJrSgcMxuh95taH92FDu3aneh6U865MqAlgDQp_iQKkMbY6DKbUPdP7h3wN1Bk-s1uYMmd9TUIzcDUhPRvzhYg8bgLxM9YOY</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Rezaei, Seyyed Hossein SeyyedAghaei</creator><creator>Moghaddam, Parham Zilouchian</creator><creator>Modarressi, Mehdi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0009-3144-3078</orcidid><orcidid>https://orcid.org/0000-0002-6310-8954</orcidid><orcidid>https://orcid.org/0000-0002-4117-7609</orcidid></search><sort><creationdate>20240101</creationdate><title>Smart Memory: Deep Learning Acceleration in 3D-Stacked Memories</title><author>Rezaei, Seyyed Hossein SeyyedAghaei ; Moghaddam, Parham Zilouchian ; Modarressi, Mehdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-efb745a301f56e775443759540352aa7fe853bbb98a51db48360906def7e39163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D-stacked memory</topic><topic>Accelerators</topic><topic>Artificial neural networks</topic><topic>Bandwidth</topic><topic>Bandwidths</topic><topic>Bottlenecks</topic><topic>Computer architecture</topic><topic>Data communication</topic><topic>Data transmission</topic><topic>deep learning accelerator</topic><topic>Distributed memory</topic><topic>Machine learning</topic><topic>Memory devices</topic><topic>Memory management</topic><topic>Network-on-memory</topic><topic>Neural networks</topic><topic>processing-in-memory</topic><topic>Random access memory</topic><topic>Switches</topic><topic>System on chip</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rezaei, Seyyed Hossein SeyyedAghaei</creatorcontrib><creatorcontrib>Moghaddam, Parham Zilouchian</creatorcontrib><creatorcontrib>Modarressi, Mehdi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE computer architecture letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rezaei, Seyyed Hossein SeyyedAghaei</au><au>Moghaddam, Parham Zilouchian</au><au>Modarressi, Mehdi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smart Memory: Deep Learning Acceleration in 3D-Stacked Memories</atitle><jtitle>IEEE computer architecture letters</jtitle><stitle>LCA</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>23</volume><issue>1</issue><spage>137</spage><epage>141</epage><pages>137-141</pages><issn>1556-6056</issn><eissn>1556-6064</eissn><coden>ICALC3</coden><abstract>Processing-in-memory (PIM) is the most promising paradigm to address the bandwidth bottleneck in deep neural network (DNN) accelerators. However, the algorithmic and dataflow structure of DNNs still necessitates moving a large amount of data across banks inside the memory device to bring input data and their corresponding model parameters together, negatively shifting part of the bandwidth bottleneck to the in-memory data communication infrastructure. To alleviate this bottleneck, we present Smart Memory , a highly parallel in-memory DNN accelerator for 3D memories that benefits from a scalable high-bandwidth in-memory network. Whereas the existing PIM designs implement the compute units and network-on-chip on the logic die of the underlying 3D memory, in Smart Memory the computation and data transmission tasks are distributed across the memory banks. To this end, each memory bank is equipped with (1) a very simple processing unit to run neural networks, and (2) a circuit-switched router to interconnect memory banks by a 3D network-on-memory. Our evaluation shows 44% average performance improvement over state-of-the-art in-memory DNN accelerators.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCA.2023.3287976</doi><tpages>5</tpages><orcidid>https://orcid.org/0009-0009-3144-3078</orcidid><orcidid>https://orcid.org/0000-0002-6310-8954</orcidid><orcidid>https://orcid.org/0000-0002-4117-7609</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1556-6056 |
ispartof | IEEE computer architecture letters, 2024-01, Vol.23 (1), p.137-141 |
issn | 1556-6056 1556-6064 |
language | eng |
recordid | cdi_proquest_journals_3068175111 |
source | IEEE Electronic Library (IEL) Journals |
subjects | 3D-stacked memory Accelerators Artificial neural networks Bandwidth Bandwidths Bottlenecks Computer architecture Data communication Data transmission deep learning accelerator Distributed memory Machine learning Memory devices Memory management Network-on-memory Neural networks processing-in-memory Random access memory Switches System on chip Three-dimensional displays |
title | Smart Memory: Deep Learning Acceleration in 3D-Stacked Memories |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A42%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smart%20Memory:%20Deep%20Learning%20Acceleration%20in%203D-Stacked%20Memories&rft.jtitle=IEEE%20computer%20architecture%20letters&rft.au=Rezaei,%20Seyyed%20Hossein%20SeyyedAghaei&rft.date=2024-01-01&rft.volume=23&rft.issue=1&rft.spage=137&rft.epage=141&rft.pages=137-141&rft.issn=1556-6056&rft.eissn=1556-6064&rft.coden=ICALC3&rft_id=info:doi/10.1109/LCA.2023.3287976&rft_dat=%3Cproquest_ieee_%3E3068175111%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-efb745a301f56e775443759540352aa7fe853bbb98a51db48360906def7e39163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3068175111&rft_id=info:pmid/&rft_ieee_id=10198388&rfr_iscdi=true |