Loading…

Generalized Parametric Iterative Approach for Tomographic SAR Reconstruction

The reconstruction of high-elevation natural and artificial structures through synthetic aperture radar (SAR) tomography has been an active research topic owing to its significance in various earth science applications. However, the complexity of this task arises from inaccuracies in the estimated r...

Full description

Saved in:
Bibliographic Details
Published in:IEEE geoscience and remote sensing letters 2024, Vol.21, p.1-5
Main Authors: Haddad, Nabil, Bouaraba, Azzedine, Hadj-Rabah, Karima, Budillon, Alessandra, Harkati, Lekhmissi, Schirinzi, Gilda
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c176t-c47ff8ef151a5a123dc9c092cfcbf231358289a6f8603c7a20024f636878d1463
container_end_page 5
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 21
creator Haddad, Nabil
Bouaraba, Azzedine
Hadj-Rabah, Karima
Budillon, Alessandra
Harkati, Lekhmissi
Schirinzi, Gilda
description The reconstruction of high-elevation natural and artificial structures through synthetic aperture radar (SAR) tomography has been an active research topic owing to its significance in various earth science applications. However, the complexity of this task arises from inaccuracies in the estimated reconstruction, attributed to factors such as low signal-to-noise ratios, decorrelations, few and uneven measurements, and overlapping scatterers. The utilization of iterative spectral estimation methods has been demonstrated to be beneficial in addressing some of these inaccuracies. Thus, selecting the best method within this class constitutes a challenge. In this context, our letter aims to propose a generalized formula linking the maximum likelihood (ML)-based iterative methods via a regularization parameter. The behavior of the latter is analyzed for several values to unveil the potential of the proposed approach in achieving a balance between noise reduction and detection performance. The experimental study has been conducted on simulated and real SAR data acquired by airborne and spaceborne systems covering tropical forests and build-up areas. The obtained results show the effectiveness and performance of the optimal regularization parameter to eliminate noise while preserving the scatterers' contribution.
doi_str_mv 10.1109/LGRS.2024.3406894
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3068175990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10542628</ieee_id><sourcerecordid>3068175990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-c47ff8ef151a5a123dc9c092cfcbf231358289a6f8603c7a20024f636878d1463</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPCw4Hlrvj-OpWgtLCjbCt5CTBO7pd2s2VTQX2-W9uBphuF5Z955AbhFcIIQVA_VvF5OMMR0QijkUtEzMEKMyRIygc6HnrKSKfl-Ca76fgszKaUYgWruWhfNrvl16-LVRLN3KTa2WKQ8Tc23K6ZdF4Oxm8KHWKzCPnxG020yspzWRe1saPsUDzY1ob0GF97sendzqmPw9vS4mj2X1ct8MZtWpUWCp9JS4b10HjFkmEGYrK2yUGHr7YfHBBEmsVSGe8khscLgwa3nhEsh14hyMgb3x73Z2dfB9UlvwyG2-aQm-XkkmFIwU-hI2Rj6Pjqvu9jsTfzRCOohND2EpofQ9Cm0rLk7ahrn3D-eUcyxJH8LUGg5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068175990</pqid></control><display><type>article</type><title>Generalized Parametric Iterative Approach for Tomographic SAR Reconstruction</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Haddad, Nabil ; Bouaraba, Azzedine ; Hadj-Rabah, Karima ; Budillon, Alessandra ; Harkati, Lekhmissi ; Schirinzi, Gilda</creator><creatorcontrib>Haddad, Nabil ; Bouaraba, Azzedine ; Hadj-Rabah, Karima ; Budillon, Alessandra ; Harkati, Lekhmissi ; Schirinzi, Gilda</creatorcontrib><description>The reconstruction of high-elevation natural and artificial structures through synthetic aperture radar (SAR) tomography has been an active research topic owing to its significance in various earth science applications. However, the complexity of this task arises from inaccuracies in the estimated reconstruction, attributed to factors such as low signal-to-noise ratios, decorrelations, few and uneven measurements, and overlapping scatterers. The utilization of iterative spectral estimation methods has been demonstrated to be beneficial in addressing some of these inaccuracies. Thus, selecting the best method within this class constitutes a challenge. In this context, our letter aims to propose a generalized formula linking the maximum likelihood (ML)-based iterative methods via a regularization parameter. The behavior of the latter is analyzed for several values to unveil the potential of the proposed approach in achieving a balance between noise reduction and detection performance. The experimental study has been conducted on simulated and real SAR data acquired by airborne and spaceborne systems covering tropical forests and build-up areas. The obtained results show the effectiveness and performance of the optimal regularization parameter to eliminate noise while preserving the scatterers' contribution.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2024.3406894</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Data acquisition ; Earth sciences ; Iterative approach ; Iterative methods ; maximum likelihood (ML) ; Noise reduction ; Parameters ; Reconstruction ; Regularization ; regularization parameter ; SAR (radar) ; Signal to noise ratio ; Synthetic aperture radar ; synthetic aperture radar (SAR) tomography ; Three-dimensional displays ; Tomography ; Tropical forests ; Vectors</subject><ispartof>IEEE geoscience and remote sensing letters, 2024, Vol.21, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-c47ff8ef151a5a123dc9c092cfcbf231358289a6f8603c7a20024f636878d1463</cites><orcidid>0000-0002-9656-2969 ; 0000-0001-6551-7834 ; 0000-0002-4143-5313 ; 0009-0005-7336-4571 ; 0000-0001-9778-0944</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10542628$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,4010,27900,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Haddad, Nabil</creatorcontrib><creatorcontrib>Bouaraba, Azzedine</creatorcontrib><creatorcontrib>Hadj-Rabah, Karima</creatorcontrib><creatorcontrib>Budillon, Alessandra</creatorcontrib><creatorcontrib>Harkati, Lekhmissi</creatorcontrib><creatorcontrib>Schirinzi, Gilda</creatorcontrib><title>Generalized Parametric Iterative Approach for Tomographic SAR Reconstruction</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>The reconstruction of high-elevation natural and artificial structures through synthetic aperture radar (SAR) tomography has been an active research topic owing to its significance in various earth science applications. However, the complexity of this task arises from inaccuracies in the estimated reconstruction, attributed to factors such as low signal-to-noise ratios, decorrelations, few and uneven measurements, and overlapping scatterers. The utilization of iterative spectral estimation methods has been demonstrated to be beneficial in addressing some of these inaccuracies. Thus, selecting the best method within this class constitutes a challenge. In this context, our letter aims to propose a generalized formula linking the maximum likelihood (ML)-based iterative methods via a regularization parameter. The behavior of the latter is analyzed for several values to unveil the potential of the proposed approach in achieving a balance between noise reduction and detection performance. The experimental study has been conducted on simulated and real SAR data acquired by airborne and spaceborne systems covering tropical forests and build-up areas. The obtained results show the effectiveness and performance of the optimal regularization parameter to eliminate noise while preserving the scatterers' contribution.</description><subject>Data acquisition</subject><subject>Earth sciences</subject><subject>Iterative approach</subject><subject>Iterative methods</subject><subject>maximum likelihood (ML)</subject><subject>Noise reduction</subject><subject>Parameters</subject><subject>Reconstruction</subject><subject>Regularization</subject><subject>regularization parameter</subject><subject>SAR (radar)</subject><subject>Signal to noise ratio</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR) tomography</subject><subject>Three-dimensional displays</subject><subject>Tomography</subject><subject>Tropical forests</subject><subject>Vectors</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMoWKs_QPCw4Hlrvj-OpWgtLCjbCt5CTBO7pd2s2VTQX2-W9uBphuF5Z955AbhFcIIQVA_VvF5OMMR0QijkUtEzMEKMyRIygc6HnrKSKfl-Ca76fgszKaUYgWruWhfNrvl16-LVRLN3KTa2WKQ8Tc23K6ZdF4Oxm8KHWKzCPnxG020yspzWRe1saPsUDzY1ob0GF97sendzqmPw9vS4mj2X1ct8MZtWpUWCp9JS4b10HjFkmEGYrK2yUGHr7YfHBBEmsVSGe8khscLgwa3nhEsh14hyMgb3x73Z2dfB9UlvwyG2-aQm-XkkmFIwU-hI2Rj6Pjqvu9jsTfzRCOohND2EpofQ9Cm0rLk7ahrn3D-eUcyxJH8LUGg5</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Haddad, Nabil</creator><creator>Bouaraba, Azzedine</creator><creator>Hadj-Rabah, Karima</creator><creator>Budillon, Alessandra</creator><creator>Harkati, Lekhmissi</creator><creator>Schirinzi, Gilda</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9656-2969</orcidid><orcidid>https://orcid.org/0000-0001-6551-7834</orcidid><orcidid>https://orcid.org/0000-0002-4143-5313</orcidid><orcidid>https://orcid.org/0009-0005-7336-4571</orcidid><orcidid>https://orcid.org/0000-0001-9778-0944</orcidid></search><sort><creationdate>2024</creationdate><title>Generalized Parametric Iterative Approach for Tomographic SAR Reconstruction</title><author>Haddad, Nabil ; Bouaraba, Azzedine ; Hadj-Rabah, Karima ; Budillon, Alessandra ; Harkati, Lekhmissi ; Schirinzi, Gilda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-c47ff8ef151a5a123dc9c092cfcbf231358289a6f8603c7a20024f636878d1463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data acquisition</topic><topic>Earth sciences</topic><topic>Iterative approach</topic><topic>Iterative methods</topic><topic>maximum likelihood (ML)</topic><topic>Noise reduction</topic><topic>Parameters</topic><topic>Reconstruction</topic><topic>Regularization</topic><topic>regularization parameter</topic><topic>SAR (radar)</topic><topic>Signal to noise ratio</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR) tomography</topic><topic>Three-dimensional displays</topic><topic>Tomography</topic><topic>Tropical forests</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haddad, Nabil</creatorcontrib><creatorcontrib>Bouaraba, Azzedine</creatorcontrib><creatorcontrib>Hadj-Rabah, Karima</creatorcontrib><creatorcontrib>Budillon, Alessandra</creatorcontrib><creatorcontrib>Harkati, Lekhmissi</creatorcontrib><creatorcontrib>Schirinzi, Gilda</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haddad, Nabil</au><au>Bouaraba, Azzedine</au><au>Hadj-Rabah, Karima</au><au>Budillon, Alessandra</au><au>Harkati, Lekhmissi</au><au>Schirinzi, Gilda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Parametric Iterative Approach for Tomographic SAR Reconstruction</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2024</date><risdate>2024</risdate><volume>21</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>The reconstruction of high-elevation natural and artificial structures through synthetic aperture radar (SAR) tomography has been an active research topic owing to its significance in various earth science applications. However, the complexity of this task arises from inaccuracies in the estimated reconstruction, attributed to factors such as low signal-to-noise ratios, decorrelations, few and uneven measurements, and overlapping scatterers. The utilization of iterative spectral estimation methods has been demonstrated to be beneficial in addressing some of these inaccuracies. Thus, selecting the best method within this class constitutes a challenge. In this context, our letter aims to propose a generalized formula linking the maximum likelihood (ML)-based iterative methods via a regularization parameter. The behavior of the latter is analyzed for several values to unveil the potential of the proposed approach in achieving a balance between noise reduction and detection performance. The experimental study has been conducted on simulated and real SAR data acquired by airborne and spaceborne systems covering tropical forests and build-up areas. The obtained results show the effectiveness and performance of the optimal regularization parameter to eliminate noise while preserving the scatterers' contribution.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2024.3406894</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9656-2969</orcidid><orcidid>https://orcid.org/0000-0001-6551-7834</orcidid><orcidid>https://orcid.org/0000-0002-4143-5313</orcidid><orcidid>https://orcid.org/0009-0005-7336-4571</orcidid><orcidid>https://orcid.org/0000-0001-9778-0944</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2024, Vol.21, p.1-5
issn 1545-598X
1558-0571
language eng
recordid cdi_proquest_journals_3068175990
source IEEE Electronic Library (IEL) Journals
subjects Data acquisition
Earth sciences
Iterative approach
Iterative methods
maximum likelihood (ML)
Noise reduction
Parameters
Reconstruction
Regularization
regularization parameter
SAR (radar)
Signal to noise ratio
Synthetic aperture radar
synthetic aperture radar (SAR) tomography
Three-dimensional displays
Tomography
Tropical forests
Vectors
title Generalized Parametric Iterative Approach for Tomographic SAR Reconstruction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A07%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Parametric%20Iterative%20Approach%20for%20Tomographic%20SAR%20Reconstruction&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Haddad,%20Nabil&rft.date=2024&rft.volume=21&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2024.3406894&rft_dat=%3Cproquest_ieee_%3E3068175990%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c176t-c47ff8ef151a5a123dc9c092cfcbf231358289a6f8603c7a20024f636878d1463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3068175990&rft_id=info:pmid/&rft_ieee_id=10542628&rfr_iscdi=true