Loading…
Generalized Parametric Iterative Approach for Tomographic SAR Reconstruction
The reconstruction of high-elevation natural and artificial structures through synthetic aperture radar (SAR) tomography has been an active research topic owing to its significance in various earth science applications. However, the complexity of this task arises from inaccuracies in the estimated r...
Saved in:
Published in: | IEEE geoscience and remote sensing letters 2024, Vol.21, p.1-5 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c176t-c47ff8ef151a5a123dc9c092cfcbf231358289a6f8603c7a20024f636878d1463 |
container_end_page | 5 |
container_issue | |
container_start_page | 1 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 21 |
creator | Haddad, Nabil Bouaraba, Azzedine Hadj-Rabah, Karima Budillon, Alessandra Harkati, Lekhmissi Schirinzi, Gilda |
description | The reconstruction of high-elevation natural and artificial structures through synthetic aperture radar (SAR) tomography has been an active research topic owing to its significance in various earth science applications. However, the complexity of this task arises from inaccuracies in the estimated reconstruction, attributed to factors such as low signal-to-noise ratios, decorrelations, few and uneven measurements, and overlapping scatterers. The utilization of iterative spectral estimation methods has been demonstrated to be beneficial in addressing some of these inaccuracies. Thus, selecting the best method within this class constitutes a challenge. In this context, our letter aims to propose a generalized formula linking the maximum likelihood (ML)-based iterative methods via a regularization parameter. The behavior of the latter is analyzed for several values to unveil the potential of the proposed approach in achieving a balance between noise reduction and detection performance. The experimental study has been conducted on simulated and real SAR data acquired by airborne and spaceborne systems covering tropical forests and build-up areas. The obtained results show the effectiveness and performance of the optimal regularization parameter to eliminate noise while preserving the scatterers' contribution. |
doi_str_mv | 10.1109/LGRS.2024.3406894 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3068175990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10542628</ieee_id><sourcerecordid>3068175990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-c47ff8ef151a5a123dc9c092cfcbf231358289a6f8603c7a20024f636878d1463</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPCw4Hlrvj-OpWgtLCjbCt5CTBO7pd2s2VTQX2-W9uBphuF5Z955AbhFcIIQVA_VvF5OMMR0QijkUtEzMEKMyRIygc6HnrKSKfl-Ca76fgszKaUYgWruWhfNrvl16-LVRLN3KTa2WKQ8Tc23K6ZdF4Oxm8KHWKzCPnxG020yspzWRe1saPsUDzY1ob0GF97sendzqmPw9vS4mj2X1ct8MZtWpUWCp9JS4b10HjFkmEGYrK2yUGHr7YfHBBEmsVSGe8khscLgwa3nhEsh14hyMgb3x73Z2dfB9UlvwyG2-aQm-XkkmFIwU-hI2Rj6Pjqvu9jsTfzRCOohND2EpofQ9Cm0rLk7ahrn3D-eUcyxJH8LUGg5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068175990</pqid></control><display><type>article</type><title>Generalized Parametric Iterative Approach for Tomographic SAR Reconstruction</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Haddad, Nabil ; Bouaraba, Azzedine ; Hadj-Rabah, Karima ; Budillon, Alessandra ; Harkati, Lekhmissi ; Schirinzi, Gilda</creator><creatorcontrib>Haddad, Nabil ; Bouaraba, Azzedine ; Hadj-Rabah, Karima ; Budillon, Alessandra ; Harkati, Lekhmissi ; Schirinzi, Gilda</creatorcontrib><description>The reconstruction of high-elevation natural and artificial structures through synthetic aperture radar (SAR) tomography has been an active research topic owing to its significance in various earth science applications. However, the complexity of this task arises from inaccuracies in the estimated reconstruction, attributed to factors such as low signal-to-noise ratios, decorrelations, few and uneven measurements, and overlapping scatterers. The utilization of iterative spectral estimation methods has been demonstrated to be beneficial in addressing some of these inaccuracies. Thus, selecting the best method within this class constitutes a challenge. In this context, our letter aims to propose a generalized formula linking the maximum likelihood (ML)-based iterative methods via a regularization parameter. The behavior of the latter is analyzed for several values to unveil the potential of the proposed approach in achieving a balance between noise reduction and detection performance. The experimental study has been conducted on simulated and real SAR data acquired by airborne and spaceborne systems covering tropical forests and build-up areas. The obtained results show the effectiveness and performance of the optimal regularization parameter to eliminate noise while preserving the scatterers' contribution.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2024.3406894</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Data acquisition ; Earth sciences ; Iterative approach ; Iterative methods ; maximum likelihood (ML) ; Noise reduction ; Parameters ; Reconstruction ; Regularization ; regularization parameter ; SAR (radar) ; Signal to noise ratio ; Synthetic aperture radar ; synthetic aperture radar (SAR) tomography ; Three-dimensional displays ; Tomography ; Tropical forests ; Vectors</subject><ispartof>IEEE geoscience and remote sensing letters, 2024, Vol.21, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-c47ff8ef151a5a123dc9c092cfcbf231358289a6f8603c7a20024f636878d1463</cites><orcidid>0000-0002-9656-2969 ; 0000-0001-6551-7834 ; 0000-0002-4143-5313 ; 0009-0005-7336-4571 ; 0000-0001-9778-0944</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10542628$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,4010,27900,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Haddad, Nabil</creatorcontrib><creatorcontrib>Bouaraba, Azzedine</creatorcontrib><creatorcontrib>Hadj-Rabah, Karima</creatorcontrib><creatorcontrib>Budillon, Alessandra</creatorcontrib><creatorcontrib>Harkati, Lekhmissi</creatorcontrib><creatorcontrib>Schirinzi, Gilda</creatorcontrib><title>Generalized Parametric Iterative Approach for Tomographic SAR Reconstruction</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>The reconstruction of high-elevation natural and artificial structures through synthetic aperture radar (SAR) tomography has been an active research topic owing to its significance in various earth science applications. However, the complexity of this task arises from inaccuracies in the estimated reconstruction, attributed to factors such as low signal-to-noise ratios, decorrelations, few and uneven measurements, and overlapping scatterers. The utilization of iterative spectral estimation methods has been demonstrated to be beneficial in addressing some of these inaccuracies. Thus, selecting the best method within this class constitutes a challenge. In this context, our letter aims to propose a generalized formula linking the maximum likelihood (ML)-based iterative methods via a regularization parameter. The behavior of the latter is analyzed for several values to unveil the potential of the proposed approach in achieving a balance between noise reduction and detection performance. The experimental study has been conducted on simulated and real SAR data acquired by airborne and spaceborne systems covering tropical forests and build-up areas. The obtained results show the effectiveness and performance of the optimal regularization parameter to eliminate noise while preserving the scatterers' contribution.</description><subject>Data acquisition</subject><subject>Earth sciences</subject><subject>Iterative approach</subject><subject>Iterative methods</subject><subject>maximum likelihood (ML)</subject><subject>Noise reduction</subject><subject>Parameters</subject><subject>Reconstruction</subject><subject>Regularization</subject><subject>regularization parameter</subject><subject>SAR (radar)</subject><subject>Signal to noise ratio</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR) tomography</subject><subject>Three-dimensional displays</subject><subject>Tomography</subject><subject>Tropical forests</subject><subject>Vectors</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMoWKs_QPCw4Hlrvj-OpWgtLCjbCt5CTBO7pd2s2VTQX2-W9uBphuF5Z955AbhFcIIQVA_VvF5OMMR0QijkUtEzMEKMyRIygc6HnrKSKfl-Ca76fgszKaUYgWruWhfNrvl16-LVRLN3KTa2WKQ8Tc23K6ZdF4Oxm8KHWKzCPnxG020yspzWRe1saPsUDzY1ob0GF97sendzqmPw9vS4mj2X1ct8MZtWpUWCp9JS4b10HjFkmEGYrK2yUGHr7YfHBBEmsVSGe8khscLgwa3nhEsh14hyMgb3x73Z2dfB9UlvwyG2-aQm-XkkmFIwU-hI2Rj6Pjqvu9jsTfzRCOohND2EpofQ9Cm0rLk7ahrn3D-eUcyxJH8LUGg5</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Haddad, Nabil</creator><creator>Bouaraba, Azzedine</creator><creator>Hadj-Rabah, Karima</creator><creator>Budillon, Alessandra</creator><creator>Harkati, Lekhmissi</creator><creator>Schirinzi, Gilda</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9656-2969</orcidid><orcidid>https://orcid.org/0000-0001-6551-7834</orcidid><orcidid>https://orcid.org/0000-0002-4143-5313</orcidid><orcidid>https://orcid.org/0009-0005-7336-4571</orcidid><orcidid>https://orcid.org/0000-0001-9778-0944</orcidid></search><sort><creationdate>2024</creationdate><title>Generalized Parametric Iterative Approach for Tomographic SAR Reconstruction</title><author>Haddad, Nabil ; Bouaraba, Azzedine ; Hadj-Rabah, Karima ; Budillon, Alessandra ; Harkati, Lekhmissi ; Schirinzi, Gilda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-c47ff8ef151a5a123dc9c092cfcbf231358289a6f8603c7a20024f636878d1463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data acquisition</topic><topic>Earth sciences</topic><topic>Iterative approach</topic><topic>Iterative methods</topic><topic>maximum likelihood (ML)</topic><topic>Noise reduction</topic><topic>Parameters</topic><topic>Reconstruction</topic><topic>Regularization</topic><topic>regularization parameter</topic><topic>SAR (radar)</topic><topic>Signal to noise ratio</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR) tomography</topic><topic>Three-dimensional displays</topic><topic>Tomography</topic><topic>Tropical forests</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haddad, Nabil</creatorcontrib><creatorcontrib>Bouaraba, Azzedine</creatorcontrib><creatorcontrib>Hadj-Rabah, Karima</creatorcontrib><creatorcontrib>Budillon, Alessandra</creatorcontrib><creatorcontrib>Harkati, Lekhmissi</creatorcontrib><creatorcontrib>Schirinzi, Gilda</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haddad, Nabil</au><au>Bouaraba, Azzedine</au><au>Hadj-Rabah, Karima</au><au>Budillon, Alessandra</au><au>Harkati, Lekhmissi</au><au>Schirinzi, Gilda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Parametric Iterative Approach for Tomographic SAR Reconstruction</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2024</date><risdate>2024</risdate><volume>21</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>The reconstruction of high-elevation natural and artificial structures through synthetic aperture radar (SAR) tomography has been an active research topic owing to its significance in various earth science applications. However, the complexity of this task arises from inaccuracies in the estimated reconstruction, attributed to factors such as low signal-to-noise ratios, decorrelations, few and uneven measurements, and overlapping scatterers. The utilization of iterative spectral estimation methods has been demonstrated to be beneficial in addressing some of these inaccuracies. Thus, selecting the best method within this class constitutes a challenge. In this context, our letter aims to propose a generalized formula linking the maximum likelihood (ML)-based iterative methods via a regularization parameter. The behavior of the latter is analyzed for several values to unveil the potential of the proposed approach in achieving a balance between noise reduction and detection performance. The experimental study has been conducted on simulated and real SAR data acquired by airborne and spaceborne systems covering tropical forests and build-up areas. The obtained results show the effectiveness and performance of the optimal regularization parameter to eliminate noise while preserving the scatterers' contribution.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2024.3406894</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9656-2969</orcidid><orcidid>https://orcid.org/0000-0001-6551-7834</orcidid><orcidid>https://orcid.org/0000-0002-4143-5313</orcidid><orcidid>https://orcid.org/0009-0005-7336-4571</orcidid><orcidid>https://orcid.org/0000-0001-9778-0944</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2024, Vol.21, p.1-5 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_proquest_journals_3068175990 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Data acquisition Earth sciences Iterative approach Iterative methods maximum likelihood (ML) Noise reduction Parameters Reconstruction Regularization regularization parameter SAR (radar) Signal to noise ratio Synthetic aperture radar synthetic aperture radar (SAR) tomography Three-dimensional displays Tomography Tropical forests Vectors |
title | Generalized Parametric Iterative Approach for Tomographic SAR Reconstruction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A07%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Parametric%20Iterative%20Approach%20for%20Tomographic%20SAR%20Reconstruction&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Haddad,%20Nabil&rft.date=2024&rft.volume=21&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2024.3406894&rft_dat=%3Cproquest_ieee_%3E3068175990%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c176t-c47ff8ef151a5a123dc9c092cfcbf231358289a6f8603c7a20024f636878d1463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3068175990&rft_id=info:pmid/&rft_ieee_id=10542628&rfr_iscdi=true |