Loading…
MuirBench: A Comprehensive Benchmark for Robust Multi-image Understanding
We introduce MuirBench, a comprehensive benchmark that focuses on robust multi-image understanding capabilities of multimodal LLMs. MuirBench consists of 12 diverse multi-image tasks (e.g., scene understanding, ordering) that involve 10 categories of multi-image relations (e.g., multiview, temporal...
Saved in:
Published in: | arXiv.org 2024-07 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Wang, Fei Fu, Xingyu Huang, James Y Li, Zekun Liu, Qin Liu, Xiaogeng Ma, Mingyu Derek Xu, Nan Zhou, Wenxuan Zhang, Kai Yan, Tianyi Lorena Mo, Wenjie Jacky Hsiang-Hui, Liu Pan, Lu Li, Chunyuan Xiao, Chaowei Kai-Wei, Chang Roth, Dan Zhang, Sheng Poon, Hoifung Chen, Muhao |
description | We introduce MuirBench, a comprehensive benchmark that focuses on robust multi-image understanding capabilities of multimodal LLMs. MuirBench consists of 12 diverse multi-image tasks (e.g., scene understanding, ordering) that involve 10 categories of multi-image relations (e.g., multiview, temporal relations). Comprising 11,264 images and 2,600 multiple-choice questions, MuirBench is created in a pairwise manner, where each standard instance is paired with an unanswerable variant that has minimal semantic differences, in order for a reliable assessment. Evaluated upon 20 recent multi-modal LLMs, our results reveal that even the best-performing models like GPT-4o and Gemini Pro find it challenging to solve MuirBench, achieving 68.0% and 49.3% in accuracy. Open-source multimodal LLMs trained on single images can hardly generalize to multi-image questions, hovering below 33.3% in accuracy. These results highlight the importance of MuirBench in encouraging the community to develop multimodal LLMs that can look beyond a single image, suggesting potential pathways for future improvements. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3068239065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3068239065</sourcerecordid><originalsourceid>FETCH-proquest_journals_30682390653</originalsourceid><addsrcrecordid>eNqNis0KgkAYAJcgSMp3-KCzsO2mWbeSog5eos6y5aeu6a7tT89fRA_QaWBmRiRgnC-idMnYhITWtpRSlqxYHPOAnHIvzQ7VvdnAFjLdDwYbVFa-EL66F-YBlTZw1jdvHeS-czKSvagRrqpEY51QpVT1jIwr0VkMf5yS-WF_yY7RYPTTo3VFq71Rn1RwmqSMr2kS8_-uN1rSPDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068239065</pqid></control><display><type>article</type><title>MuirBench: A Comprehensive Benchmark for Robust Multi-image Understanding</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Wang, Fei ; Fu, Xingyu ; Huang, James Y ; Li, Zekun ; Liu, Qin ; Liu, Xiaogeng ; Ma, Mingyu Derek ; Xu, Nan ; Zhou, Wenxuan ; Zhang, Kai ; Yan, Tianyi Lorena ; Mo, Wenjie Jacky ; Hsiang-Hui, Liu ; Pan, Lu ; Li, Chunyuan ; Xiao, Chaowei ; Kai-Wei, Chang ; Roth, Dan ; Zhang, Sheng ; Poon, Hoifung ; Chen, Muhao</creator><creatorcontrib>Wang, Fei ; Fu, Xingyu ; Huang, James Y ; Li, Zekun ; Liu, Qin ; Liu, Xiaogeng ; Ma, Mingyu Derek ; Xu, Nan ; Zhou, Wenxuan ; Zhang, Kai ; Yan, Tianyi Lorena ; Mo, Wenjie Jacky ; Hsiang-Hui, Liu ; Pan, Lu ; Li, Chunyuan ; Xiao, Chaowei ; Kai-Wei, Chang ; Roth, Dan ; Zhang, Sheng ; Poon, Hoifung ; Chen, Muhao</creatorcontrib><description>We introduce MuirBench, a comprehensive benchmark that focuses on robust multi-image understanding capabilities of multimodal LLMs. MuirBench consists of 12 diverse multi-image tasks (e.g., scene understanding, ordering) that involve 10 categories of multi-image relations (e.g., multiview, temporal relations). Comprising 11,264 images and 2,600 multiple-choice questions, MuirBench is created in a pairwise manner, where each standard instance is paired with an unanswerable variant that has minimal semantic differences, in order for a reliable assessment. Evaluated upon 20 recent multi-modal LLMs, our results reveal that even the best-performing models like GPT-4o and Gemini Pro find it challenging to solve MuirBench, achieving 68.0% and 49.3% in accuracy. Open-source multimodal LLMs trained on single images can hardly generalize to multi-image questions, hovering below 33.3% in accuracy. These results highlight the importance of MuirBench in encouraging the community to develop multimodal LLMs that can look beyond a single image, suggesting potential pathways for future improvements.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Benchmarks ; Hovering ; Questions ; Robustness ; Scene analysis</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3068239065?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Fu, Xingyu</creatorcontrib><creatorcontrib>Huang, James Y</creatorcontrib><creatorcontrib>Li, Zekun</creatorcontrib><creatorcontrib>Liu, Qin</creatorcontrib><creatorcontrib>Liu, Xiaogeng</creatorcontrib><creatorcontrib>Ma, Mingyu Derek</creatorcontrib><creatorcontrib>Xu, Nan</creatorcontrib><creatorcontrib>Zhou, Wenxuan</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Yan, Tianyi Lorena</creatorcontrib><creatorcontrib>Mo, Wenjie Jacky</creatorcontrib><creatorcontrib>Hsiang-Hui, Liu</creatorcontrib><creatorcontrib>Pan, Lu</creatorcontrib><creatorcontrib>Li, Chunyuan</creatorcontrib><creatorcontrib>Xiao, Chaowei</creatorcontrib><creatorcontrib>Kai-Wei, Chang</creatorcontrib><creatorcontrib>Roth, Dan</creatorcontrib><creatorcontrib>Zhang, Sheng</creatorcontrib><creatorcontrib>Poon, Hoifung</creatorcontrib><creatorcontrib>Chen, Muhao</creatorcontrib><title>MuirBench: A Comprehensive Benchmark for Robust Multi-image Understanding</title><title>arXiv.org</title><description>We introduce MuirBench, a comprehensive benchmark that focuses on robust multi-image understanding capabilities of multimodal LLMs. MuirBench consists of 12 diverse multi-image tasks (e.g., scene understanding, ordering) that involve 10 categories of multi-image relations (e.g., multiview, temporal relations). Comprising 11,264 images and 2,600 multiple-choice questions, MuirBench is created in a pairwise manner, where each standard instance is paired with an unanswerable variant that has minimal semantic differences, in order for a reliable assessment. Evaluated upon 20 recent multi-modal LLMs, our results reveal that even the best-performing models like GPT-4o and Gemini Pro find it challenging to solve MuirBench, achieving 68.0% and 49.3% in accuracy. Open-source multimodal LLMs trained on single images can hardly generalize to multi-image questions, hovering below 33.3% in accuracy. These results highlight the importance of MuirBench in encouraging the community to develop multimodal LLMs that can look beyond a single image, suggesting potential pathways for future improvements.</description><subject>Benchmarks</subject><subject>Hovering</subject><subject>Questions</subject><subject>Robustness</subject><subject>Scene analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNis0KgkAYAJcgSMp3-KCzsO2mWbeSog5eos6y5aeu6a7tT89fRA_QaWBmRiRgnC-idMnYhITWtpRSlqxYHPOAnHIvzQ7VvdnAFjLdDwYbVFa-EL66F-YBlTZw1jdvHeS-czKSvagRrqpEY51QpVT1jIwr0VkMf5yS-WF_yY7RYPTTo3VFq71Rn1RwmqSMr2kS8_-uN1rSPDQ</recordid><startdate>20240702</startdate><enddate>20240702</enddate><creator>Wang, Fei</creator><creator>Fu, Xingyu</creator><creator>Huang, James Y</creator><creator>Li, Zekun</creator><creator>Liu, Qin</creator><creator>Liu, Xiaogeng</creator><creator>Ma, Mingyu Derek</creator><creator>Xu, Nan</creator><creator>Zhou, Wenxuan</creator><creator>Zhang, Kai</creator><creator>Yan, Tianyi Lorena</creator><creator>Mo, Wenjie Jacky</creator><creator>Hsiang-Hui, Liu</creator><creator>Pan, Lu</creator><creator>Li, Chunyuan</creator><creator>Xiao, Chaowei</creator><creator>Kai-Wei, Chang</creator><creator>Roth, Dan</creator><creator>Zhang, Sheng</creator><creator>Poon, Hoifung</creator><creator>Chen, Muhao</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240702</creationdate><title>MuirBench: A Comprehensive Benchmark for Robust Multi-image Understanding</title><author>Wang, Fei ; Fu, Xingyu ; Huang, James Y ; Li, Zekun ; Liu, Qin ; Liu, Xiaogeng ; Ma, Mingyu Derek ; Xu, Nan ; Zhou, Wenxuan ; Zhang, Kai ; Yan, Tianyi Lorena ; Mo, Wenjie Jacky ; Hsiang-Hui, Liu ; Pan, Lu ; Li, Chunyuan ; Xiao, Chaowei ; Kai-Wei, Chang ; Roth, Dan ; Zhang, Sheng ; Poon, Hoifung ; Chen, Muhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30682390653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Benchmarks</topic><topic>Hovering</topic><topic>Questions</topic><topic>Robustness</topic><topic>Scene analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Fu, Xingyu</creatorcontrib><creatorcontrib>Huang, James Y</creatorcontrib><creatorcontrib>Li, Zekun</creatorcontrib><creatorcontrib>Liu, Qin</creatorcontrib><creatorcontrib>Liu, Xiaogeng</creatorcontrib><creatorcontrib>Ma, Mingyu Derek</creatorcontrib><creatorcontrib>Xu, Nan</creatorcontrib><creatorcontrib>Zhou, Wenxuan</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Yan, Tianyi Lorena</creatorcontrib><creatorcontrib>Mo, Wenjie Jacky</creatorcontrib><creatorcontrib>Hsiang-Hui, Liu</creatorcontrib><creatorcontrib>Pan, Lu</creatorcontrib><creatorcontrib>Li, Chunyuan</creatorcontrib><creatorcontrib>Xiao, Chaowei</creatorcontrib><creatorcontrib>Kai-Wei, Chang</creatorcontrib><creatorcontrib>Roth, Dan</creatorcontrib><creatorcontrib>Zhang, Sheng</creatorcontrib><creatorcontrib>Poon, Hoifung</creatorcontrib><creatorcontrib>Chen, Muhao</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Fei</au><au>Fu, Xingyu</au><au>Huang, James Y</au><au>Li, Zekun</au><au>Liu, Qin</au><au>Liu, Xiaogeng</au><au>Ma, Mingyu Derek</au><au>Xu, Nan</au><au>Zhou, Wenxuan</au><au>Zhang, Kai</au><au>Yan, Tianyi Lorena</au><au>Mo, Wenjie Jacky</au><au>Hsiang-Hui, Liu</au><au>Pan, Lu</au><au>Li, Chunyuan</au><au>Xiao, Chaowei</au><au>Kai-Wei, Chang</au><au>Roth, Dan</au><au>Zhang, Sheng</au><au>Poon, Hoifung</au><au>Chen, Muhao</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>MuirBench: A Comprehensive Benchmark for Robust Multi-image Understanding</atitle><jtitle>arXiv.org</jtitle><date>2024-07-02</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We introduce MuirBench, a comprehensive benchmark that focuses on robust multi-image understanding capabilities of multimodal LLMs. MuirBench consists of 12 diverse multi-image tasks (e.g., scene understanding, ordering) that involve 10 categories of multi-image relations (e.g., multiview, temporal relations). Comprising 11,264 images and 2,600 multiple-choice questions, MuirBench is created in a pairwise manner, where each standard instance is paired with an unanswerable variant that has minimal semantic differences, in order for a reliable assessment. Evaluated upon 20 recent multi-modal LLMs, our results reveal that even the best-performing models like GPT-4o and Gemini Pro find it challenging to solve MuirBench, achieving 68.0% and 49.3% in accuracy. Open-source multimodal LLMs trained on single images can hardly generalize to multi-image questions, hovering below 33.3% in accuracy. These results highlight the importance of MuirBench in encouraging the community to develop multimodal LLMs that can look beyond a single image, suggesting potential pathways for future improvements.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3068239065 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Benchmarks Hovering Questions Robustness Scene analysis |
title | MuirBench: A Comprehensive Benchmark for Robust Multi-image Understanding |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A01%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=MuirBench:%20A%20Comprehensive%20Benchmark%20for%20Robust%20Multi-image%20Understanding&rft.jtitle=arXiv.org&rft.au=Wang,%20Fei&rft.date=2024-07-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3068239065%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30682390653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3068239065&rft_id=info:pmid/&rfr_iscdi=true |