Loading…

Signature of non-trivial band topology in Shubnikov--de Haas oscillations

We investigate the Shubnikov-de Haas (SdH) magneto-oscillations in the resistivity of two-dimensional topological insulators (TIs). Within the Bernevig-Hughes-Zhang (BHZ) model for TIs in the presence of a quantizing magnetic field, we obtain analytical expressions for the SdH oscillations by combin...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-06
Main Authors: Candido, Denis R, Erlingsson, Sigurdur I, João Vitor I Costa, Egues, J Carlos
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Candido, Denis R
Erlingsson, Sigurdur I
João Vitor I Costa
Egues, J Carlos
description We investigate the Shubnikov-de Haas (SdH) magneto-oscillations in the resistivity of two-dimensional topological insulators (TIs). Within the Bernevig-Hughes-Zhang (BHZ) model for TIs in the presence of a quantizing magnetic field, we obtain analytical expressions for the SdH oscillations by combining a semiclassical approach for the resistivity and a trace formula for the density of states. We show that when the non-trivial topology is produced by inverted bands with ''Mexican-hat'' shape, SdH oscillations show an anomalous beating pattern that is {\it solely} due to the non-trivial topology of the system. These beatings are robust against, and distinct from beatings originating from spin-orbit interactions. This provides a direct way to experimentally probe the non-trivial topology of 2D TIs entirely from a bulk measurement. Furthermore, the Fourier transform of the SdH oscillations as a function of the Fermi energy and quantum capacitance models allows for extracting both the topological gap and gap at zero momentum.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3068240932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3068240932</sourcerecordid><originalsourceid>FETCH-proquest_journals_30682409323</originalsourceid><addsrcrecordid>eNqNyrEOgjAUQNHGxESi_MNLnJvUFhBno8FZd1KkYLF5D9tC4t_r4Ac43eHcBUukUjteZlKuWBrCIISQxV7muUrY5Wp71HHyBqgDJOTR29lqB43GFiKN5Kh_g0W4PqYG7ZNmzlsDldYBKNytczpawrBhy067YNJf12x7Pt2OFR89vSYTYj3Q5PFLtRJFKTNxUFL9d30Ai488aA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068240932</pqid></control><display><type>article</type><title>Signature of non-trivial band topology in Shubnikov--de Haas oscillations</title><source>Publicly Available Content Database</source><creator>Candido, Denis R ; Erlingsson, Sigurdur I ; João Vitor I Costa ; Egues, J Carlos</creator><creatorcontrib>Candido, Denis R ; Erlingsson, Sigurdur I ; João Vitor I Costa ; Egues, J Carlos</creatorcontrib><description>We investigate the Shubnikov-de Haas (SdH) magneto-oscillations in the resistivity of two-dimensional topological insulators (TIs). Within the Bernevig-Hughes-Zhang (BHZ) model for TIs in the presence of a quantizing magnetic field, we obtain analytical expressions for the SdH oscillations by combining a semiclassical approach for the resistivity and a trace formula for the density of states. We show that when the non-trivial topology is produced by inverted bands with ''Mexican-hat'' shape, SdH oscillations show an anomalous beating pattern that is {\it solely} due to the non-trivial topology of the system. These beatings are robust against, and distinct from beatings originating from spin-orbit interactions. This provides a direct way to experimentally probe the non-trivial topology of 2D TIs entirely from a bulk measurement. Furthermore, the Fourier transform of the SdH oscillations as a function of the Fermi energy and quantum capacitance models allows for extracting both the topological gap and gap at zero momentum.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Electrical resistivity ; Fourier transforms ; Oscillations ; Spin-orbit interactions ; Topological insulators ; Topology</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3068240932?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>778,782,25740,36999,44577</link.rule.ids></links><search><creatorcontrib>Candido, Denis R</creatorcontrib><creatorcontrib>Erlingsson, Sigurdur I</creatorcontrib><creatorcontrib>João Vitor I Costa</creatorcontrib><creatorcontrib>Egues, J Carlos</creatorcontrib><title>Signature of non-trivial band topology in Shubnikov--de Haas oscillations</title><title>arXiv.org</title><description>We investigate the Shubnikov-de Haas (SdH) magneto-oscillations in the resistivity of two-dimensional topological insulators (TIs). Within the Bernevig-Hughes-Zhang (BHZ) model for TIs in the presence of a quantizing magnetic field, we obtain analytical expressions for the SdH oscillations by combining a semiclassical approach for the resistivity and a trace formula for the density of states. We show that when the non-trivial topology is produced by inverted bands with ''Mexican-hat'' shape, SdH oscillations show an anomalous beating pattern that is {\it solely} due to the non-trivial topology of the system. These beatings are robust against, and distinct from beatings originating from spin-orbit interactions. This provides a direct way to experimentally probe the non-trivial topology of 2D TIs entirely from a bulk measurement. Furthermore, the Fourier transform of the SdH oscillations as a function of the Fermi energy and quantum capacitance models allows for extracting both the topological gap and gap at zero momentum.</description><subject>Electrical resistivity</subject><subject>Fourier transforms</subject><subject>Oscillations</subject><subject>Spin-orbit interactions</subject><subject>Topological insulators</subject><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyrEOgjAUQNHGxESi_MNLnJvUFhBno8FZd1KkYLF5D9tC4t_r4Ac43eHcBUukUjteZlKuWBrCIISQxV7muUrY5Wp71HHyBqgDJOTR29lqB43GFiKN5Kh_g0W4PqYG7ZNmzlsDldYBKNytczpawrBhy067YNJf12x7Pt2OFR89vSYTYj3Q5PFLtRJFKTNxUFL9d30Ai488aA</recordid><startdate>20240613</startdate><enddate>20240613</enddate><creator>Candido, Denis R</creator><creator>Erlingsson, Sigurdur I</creator><creator>João Vitor I Costa</creator><creator>Egues, J Carlos</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240613</creationdate><title>Signature of non-trivial band topology in Shubnikov--de Haas oscillations</title><author>Candido, Denis R ; Erlingsson, Sigurdur I ; João Vitor I Costa ; Egues, J Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30682409323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Electrical resistivity</topic><topic>Fourier transforms</topic><topic>Oscillations</topic><topic>Spin-orbit interactions</topic><topic>Topological insulators</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Candido, Denis R</creatorcontrib><creatorcontrib>Erlingsson, Sigurdur I</creatorcontrib><creatorcontrib>João Vitor I Costa</creatorcontrib><creatorcontrib>Egues, J Carlos</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Candido, Denis R</au><au>Erlingsson, Sigurdur I</au><au>João Vitor I Costa</au><au>Egues, J Carlos</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Signature of non-trivial band topology in Shubnikov--de Haas oscillations</atitle><jtitle>arXiv.org</jtitle><date>2024-06-13</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We investigate the Shubnikov-de Haas (SdH) magneto-oscillations in the resistivity of two-dimensional topological insulators (TIs). Within the Bernevig-Hughes-Zhang (BHZ) model for TIs in the presence of a quantizing magnetic field, we obtain analytical expressions for the SdH oscillations by combining a semiclassical approach for the resistivity and a trace formula for the density of states. We show that when the non-trivial topology is produced by inverted bands with ''Mexican-hat'' shape, SdH oscillations show an anomalous beating pattern that is {\it solely} due to the non-trivial topology of the system. These beatings are robust against, and distinct from beatings originating from spin-orbit interactions. This provides a direct way to experimentally probe the non-trivial topology of 2D TIs entirely from a bulk measurement. Furthermore, the Fourier transform of the SdH oscillations as a function of the Fermi energy and quantum capacitance models allows for extracting both the topological gap and gap at zero momentum.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_3068240932
source Publicly Available Content Database
subjects Electrical resistivity
Fourier transforms
Oscillations
Spin-orbit interactions
Topological insulators
Topology
title Signature of non-trivial band topology in Shubnikov--de Haas oscillations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A14%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Signature%20of%20non-trivial%20band%20topology%20in%20Shubnikov--de%20Haas%20oscillations&rft.jtitle=arXiv.org&rft.au=Candido,%20Denis%20R&rft.date=2024-06-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3068240932%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30682409323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3068240932&rft_id=info:pmid/&rfr_iscdi=true