Loading…

Analysis of Natural Daftardar–Jafari Method for Fractional Delay Differential Equations

The decomposition methods such as Daftardar–Jafari method (DJM) have been applied previously to obtain a solution of the fractional differential equations. In the present article, we develop a decomposition method to solve fractional delay differential equations (FDDEs) using Natural Transform and D...

Full description

Saved in:
Bibliographic Details
Published in:International journal of applied and computational mathematics 2024-06, Vol.10 (3), Article 117
Main Authors: Mahatekar, Yogita, Deshpande, Amey S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1851-6dc06c2f59d9e98959ec648e3e0324b1d18291c8c60a9a6f76f4f8bd6c385c413
container_end_page
container_issue 3
container_start_page
container_title International journal of applied and computational mathematics
container_volume 10
creator Mahatekar, Yogita
Deshpande, Amey S.
description The decomposition methods such as Daftardar–Jafari method (DJM) have been applied previously to obtain a solution of the fractional differential equations. In the present article, we develop a decomposition method to solve fractional delay differential equations (FDDEs) using Natural Transform and Daftardar–Jafari method. This method is referred to as Natural Dafatardar Jafari Method (NDJM) for fractional delay differential equations. Further we perform a convergence analysis of NDJM for FDDEs and find the error bounds. We demonstrate NDJM for FDDEs with the help of various examples involving FDDEs and systems of FDDEs. We prove that the NDJM for FDDEs is more accurate than the contemporary integral transform methods, simplistic to implement yet more generalized than other transforms, and efficient in each case.
doi_str_mv 10.1007/s40819-024-01753-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3068587328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3068587328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1851-6dc06c2f59d9e98959ec648e3e0324b1d18291c8c60a9a6f76f4f8bd6c385c413</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EElXpD7CKxDowfsSxl1UfPFRgAwtW1tSxIVVoWjtZdMc_8Id8CQlBYsdqrmbOvRpdQs4pXFKA_CoKUFSnwEQKNM94So_IiFGt0yzX8rjTXHSaAj8lkxg3AMCoyIGpEXmZbrE6xDImtU8esGkDVskcfYOhwPD18XmHHkOZ3LvmrS4SX4dkGdA2Zb3tQVfhIZmX3rvgtk3ZrRb7FvtrPCMnHqvoJr9zTJ6Xi6fZTbp6vL6dTVeppSqjqSwsSMt8pgvttNKZdlYK5bgDzsSaFlQxTa2yElCj9Ln0wqt1IS1XmRWUj8nFkLsL9b51sTGbug3dd9FwkCpTOWeqo9hA2VDHGJw3u1C-YzgYCqZv0Qwtmq5F89Oi6aP5YIodvH114S_6H9c3bpR1UQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068587328</pqid></control><display><type>article</type><title>Analysis of Natural Daftardar–Jafari Method for Fractional Delay Differential Equations</title><source>Springer Link</source><creator>Mahatekar, Yogita ; Deshpande, Amey S.</creator><creatorcontrib>Mahatekar, Yogita ; Deshpande, Amey S.</creatorcontrib><description>The decomposition methods such as Daftardar–Jafari method (DJM) have been applied previously to obtain a solution of the fractional differential equations. In the present article, we develop a decomposition method to solve fractional delay differential equations (FDDEs) using Natural Transform and Daftardar–Jafari method. This method is referred to as Natural Dafatardar Jafari Method (NDJM) for fractional delay differential equations. Further we perform a convergence analysis of NDJM for FDDEs and find the error bounds. We demonstrate NDJM for FDDEs with the help of various examples involving FDDEs and systems of FDDEs. We prove that the NDJM for FDDEs is more accurate than the contemporary integral transform methods, simplistic to implement yet more generalized than other transforms, and efficient in each case.</description><identifier>ISSN: 2349-5103</identifier><identifier>EISSN: 2199-5796</identifier><identifier>DOI: 10.1007/s40819-024-01753-1</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Applications of Mathematics ; Computational Science and Engineering ; Decomposition ; Delay ; Differential equations ; Fractional calculus ; Integral transforms ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Nuclear Energy ; Operations Research/Decision Theory ; Original Paper ; Theoretical</subject><ispartof>International journal of applied and computational mathematics, 2024-06, Vol.10 (3), Article 117</ispartof><rights>The Author(s), under exclusive licence to Springer Nature India Private Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1851-6dc06c2f59d9e98959ec648e3e0324b1d18291c8c60a9a6f76f4f8bd6c385c413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mahatekar, Yogita</creatorcontrib><creatorcontrib>Deshpande, Amey S.</creatorcontrib><title>Analysis of Natural Daftardar–Jafari Method for Fractional Delay Differential Equations</title><title>International journal of applied and computational mathematics</title><addtitle>Int. J. Appl. Comput. Math</addtitle><description>The decomposition methods such as Daftardar–Jafari method (DJM) have been applied previously to obtain a solution of the fractional differential equations. In the present article, we develop a decomposition method to solve fractional delay differential equations (FDDEs) using Natural Transform and Daftardar–Jafari method. This method is referred to as Natural Dafatardar Jafari Method (NDJM) for fractional delay differential equations. Further we perform a convergence analysis of NDJM for FDDEs and find the error bounds. We demonstrate NDJM for FDDEs with the help of various examples involving FDDEs and systems of FDDEs. We prove that the NDJM for FDDEs is more accurate than the contemporary integral transform methods, simplistic to implement yet more generalized than other transforms, and efficient in each case.</description><subject>Applications of Mathematics</subject><subject>Computational Science and Engineering</subject><subject>Decomposition</subject><subject>Delay</subject><subject>Differential equations</subject><subject>Fractional calculus</subject><subject>Integral transforms</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nuclear Energy</subject><subject>Operations Research/Decision Theory</subject><subject>Original Paper</subject><subject>Theoretical</subject><issn>2349-5103</issn><issn>2199-5796</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EElXpD7CKxDowfsSxl1UfPFRgAwtW1tSxIVVoWjtZdMc_8Id8CQlBYsdqrmbOvRpdQs4pXFKA_CoKUFSnwEQKNM94So_IiFGt0yzX8rjTXHSaAj8lkxg3AMCoyIGpEXmZbrE6xDImtU8esGkDVskcfYOhwPD18XmHHkOZ3LvmrS4SX4dkGdA2Zb3tQVfhIZmX3rvgtk3ZrRb7FvtrPCMnHqvoJr9zTJ6Xi6fZTbp6vL6dTVeppSqjqSwsSMt8pgvttNKZdlYK5bgDzsSaFlQxTa2yElCj9Ln0wqt1IS1XmRWUj8nFkLsL9b51sTGbug3dd9FwkCpTOWeqo9hA2VDHGJw3u1C-YzgYCqZv0Qwtmq5F89Oi6aP5YIodvH114S_6H9c3bpR1UQ</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Mahatekar, Yogita</creator><creator>Deshpande, Amey S.</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240601</creationdate><title>Analysis of Natural Daftardar–Jafari Method for Fractional Delay Differential Equations</title><author>Mahatekar, Yogita ; Deshpande, Amey S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1851-6dc06c2f59d9e98959ec648e3e0324b1d18291c8c60a9a6f76f4f8bd6c385c413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications of Mathematics</topic><topic>Computational Science and Engineering</topic><topic>Decomposition</topic><topic>Delay</topic><topic>Differential equations</topic><topic>Fractional calculus</topic><topic>Integral transforms</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nuclear Energy</topic><topic>Operations Research/Decision Theory</topic><topic>Original Paper</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahatekar, Yogita</creatorcontrib><creatorcontrib>Deshpande, Amey S.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of applied and computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahatekar, Yogita</au><au>Deshpande, Amey S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Natural Daftardar–Jafari Method for Fractional Delay Differential Equations</atitle><jtitle>International journal of applied and computational mathematics</jtitle><stitle>Int. J. Appl. Comput. Math</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>10</volume><issue>3</issue><artnum>117</artnum><issn>2349-5103</issn><eissn>2199-5796</eissn><abstract>The decomposition methods such as Daftardar–Jafari method (DJM) have been applied previously to obtain a solution of the fractional differential equations. In the present article, we develop a decomposition method to solve fractional delay differential equations (FDDEs) using Natural Transform and Daftardar–Jafari method. This method is referred to as Natural Dafatardar Jafari Method (NDJM) for fractional delay differential equations. Further we perform a convergence analysis of NDJM for FDDEs and find the error bounds. We demonstrate NDJM for FDDEs with the help of various examples involving FDDEs and systems of FDDEs. We prove that the NDJM for FDDEs is more accurate than the contemporary integral transform methods, simplistic to implement yet more generalized than other transforms, and efficient in each case.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s40819-024-01753-1</doi></addata></record>
fulltext fulltext
identifier ISSN: 2349-5103
ispartof International journal of applied and computational mathematics, 2024-06, Vol.10 (3), Article 117
issn 2349-5103
2199-5796
language eng
recordid cdi_proquest_journals_3068587328
source Springer Link
subjects Applications of Mathematics
Computational Science and Engineering
Decomposition
Delay
Differential equations
Fractional calculus
Integral transforms
Mathematical and Computational Physics
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Nuclear Energy
Operations Research/Decision Theory
Original Paper
Theoretical
title Analysis of Natural Daftardar–Jafari Method for Fractional Delay Differential Equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A38%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Natural%20Daftardar%E2%80%93Jafari%20Method%20for%20Fractional%20Delay%20Differential%20Equations&rft.jtitle=International%20journal%20of%20applied%20and%20computational%20mathematics&rft.au=Mahatekar,%20Yogita&rft.date=2024-06-01&rft.volume=10&rft.issue=3&rft.artnum=117&rft.issn=2349-5103&rft.eissn=2199-5796&rft_id=info:doi/10.1007/s40819-024-01753-1&rft_dat=%3Cproquest_cross%3E3068587328%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1851-6dc06c2f59d9e98959ec648e3e0324b1d18291c8c60a9a6f76f4f8bd6c385c413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3068587328&rft_id=info:pmid/&rfr_iscdi=true