Loading…
Analysis of Natural Daftardar–Jafari Method for Fractional Delay Differential Equations
The decomposition methods such as Daftardar–Jafari method (DJM) have been applied previously to obtain a solution of the fractional differential equations. In the present article, we develop a decomposition method to solve fractional delay differential equations (FDDEs) using Natural Transform and D...
Saved in:
Published in: | International journal of applied and computational mathematics 2024-06, Vol.10 (3), Article 117 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1851-6dc06c2f59d9e98959ec648e3e0324b1d18291c8c60a9a6f76f4f8bd6c385c413 |
container_end_page | |
container_issue | 3 |
container_start_page | |
container_title | International journal of applied and computational mathematics |
container_volume | 10 |
creator | Mahatekar, Yogita Deshpande, Amey S. |
description | The decomposition methods such as Daftardar–Jafari method (DJM) have been applied previously to obtain a solution of the fractional differential equations. In the present article, we develop a decomposition method to solve fractional delay differential equations (FDDEs) using Natural Transform and Daftardar–Jafari method. This method is referred to as Natural Dafatardar Jafari Method (NDJM) for fractional delay differential equations. Further we perform a convergence analysis of NDJM for FDDEs and find the error bounds. We demonstrate NDJM for FDDEs with the help of various examples involving FDDEs and systems of FDDEs. We prove that the NDJM for FDDEs is more accurate than the contemporary integral transform methods, simplistic to implement yet more generalized than other transforms, and efficient in each case. |
doi_str_mv | 10.1007/s40819-024-01753-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3068587328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3068587328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1851-6dc06c2f59d9e98959ec648e3e0324b1d18291c8c60a9a6f76f4f8bd6c385c413</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EElXpD7CKxDowfsSxl1UfPFRgAwtW1tSxIVVoWjtZdMc_8Id8CQlBYsdqrmbOvRpdQs4pXFKA_CoKUFSnwEQKNM94So_IiFGt0yzX8rjTXHSaAj8lkxg3AMCoyIGpEXmZbrE6xDImtU8esGkDVskcfYOhwPD18XmHHkOZ3LvmrS4SX4dkGdA2Zb3tQVfhIZmX3rvgtk3ZrRb7FvtrPCMnHqvoJr9zTJ6Xi6fZTbp6vL6dTVeppSqjqSwsSMt8pgvttNKZdlYK5bgDzsSaFlQxTa2yElCj9Ln0wqt1IS1XmRWUj8nFkLsL9b51sTGbug3dd9FwkCpTOWeqo9hA2VDHGJw3u1C-YzgYCqZv0Qwtmq5F89Oi6aP5YIodvH114S_6H9c3bpR1UQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068587328</pqid></control><display><type>article</type><title>Analysis of Natural Daftardar–Jafari Method for Fractional Delay Differential Equations</title><source>Springer Link</source><creator>Mahatekar, Yogita ; Deshpande, Amey S.</creator><creatorcontrib>Mahatekar, Yogita ; Deshpande, Amey S.</creatorcontrib><description>The decomposition methods such as Daftardar–Jafari method (DJM) have been applied previously to obtain a solution of the fractional differential equations. In the present article, we develop a decomposition method to solve fractional delay differential equations (FDDEs) using Natural Transform and Daftardar–Jafari method. This method is referred to as Natural Dafatardar Jafari Method (NDJM) for fractional delay differential equations. Further we perform a convergence analysis of NDJM for FDDEs and find the error bounds. We demonstrate NDJM for FDDEs with the help of various examples involving FDDEs and systems of FDDEs. We prove that the NDJM for FDDEs is more accurate than the contemporary integral transform methods, simplistic to implement yet more generalized than other transforms, and efficient in each case.</description><identifier>ISSN: 2349-5103</identifier><identifier>EISSN: 2199-5796</identifier><identifier>DOI: 10.1007/s40819-024-01753-1</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Applications of Mathematics ; Computational Science and Engineering ; Decomposition ; Delay ; Differential equations ; Fractional calculus ; Integral transforms ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Nuclear Energy ; Operations Research/Decision Theory ; Original Paper ; Theoretical</subject><ispartof>International journal of applied and computational mathematics, 2024-06, Vol.10 (3), Article 117</ispartof><rights>The Author(s), under exclusive licence to Springer Nature India Private Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1851-6dc06c2f59d9e98959ec648e3e0324b1d18291c8c60a9a6f76f4f8bd6c385c413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mahatekar, Yogita</creatorcontrib><creatorcontrib>Deshpande, Amey S.</creatorcontrib><title>Analysis of Natural Daftardar–Jafari Method for Fractional Delay Differential Equations</title><title>International journal of applied and computational mathematics</title><addtitle>Int. J. Appl. Comput. Math</addtitle><description>The decomposition methods such as Daftardar–Jafari method (DJM) have been applied previously to obtain a solution of the fractional differential equations. In the present article, we develop a decomposition method to solve fractional delay differential equations (FDDEs) using Natural Transform and Daftardar–Jafari method. This method is referred to as Natural Dafatardar Jafari Method (NDJM) for fractional delay differential equations. Further we perform a convergence analysis of NDJM for FDDEs and find the error bounds. We demonstrate NDJM for FDDEs with the help of various examples involving FDDEs and systems of FDDEs. We prove that the NDJM for FDDEs is more accurate than the contemporary integral transform methods, simplistic to implement yet more generalized than other transforms, and efficient in each case.</description><subject>Applications of Mathematics</subject><subject>Computational Science and Engineering</subject><subject>Decomposition</subject><subject>Delay</subject><subject>Differential equations</subject><subject>Fractional calculus</subject><subject>Integral transforms</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nuclear Energy</subject><subject>Operations Research/Decision Theory</subject><subject>Original Paper</subject><subject>Theoretical</subject><issn>2349-5103</issn><issn>2199-5796</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EElXpD7CKxDowfsSxl1UfPFRgAwtW1tSxIVVoWjtZdMc_8Id8CQlBYsdqrmbOvRpdQs4pXFKA_CoKUFSnwEQKNM94So_IiFGt0yzX8rjTXHSaAj8lkxg3AMCoyIGpEXmZbrE6xDImtU8esGkDVskcfYOhwPD18XmHHkOZ3LvmrS4SX4dkGdA2Zb3tQVfhIZmX3rvgtk3ZrRb7FvtrPCMnHqvoJr9zTJ6Xi6fZTbp6vL6dTVeppSqjqSwsSMt8pgvttNKZdlYK5bgDzsSaFlQxTa2yElCj9Ln0wqt1IS1XmRWUj8nFkLsL9b51sTGbug3dd9FwkCpTOWeqo9hA2VDHGJw3u1C-YzgYCqZv0Qwtmq5F89Oi6aP5YIodvH114S_6H9c3bpR1UQ</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Mahatekar, Yogita</creator><creator>Deshpande, Amey S.</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240601</creationdate><title>Analysis of Natural Daftardar–Jafari Method for Fractional Delay Differential Equations</title><author>Mahatekar, Yogita ; Deshpande, Amey S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1851-6dc06c2f59d9e98959ec648e3e0324b1d18291c8c60a9a6f76f4f8bd6c385c413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications of Mathematics</topic><topic>Computational Science and Engineering</topic><topic>Decomposition</topic><topic>Delay</topic><topic>Differential equations</topic><topic>Fractional calculus</topic><topic>Integral transforms</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nuclear Energy</topic><topic>Operations Research/Decision Theory</topic><topic>Original Paper</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahatekar, Yogita</creatorcontrib><creatorcontrib>Deshpande, Amey S.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of applied and computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahatekar, Yogita</au><au>Deshpande, Amey S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Natural Daftardar–Jafari Method for Fractional Delay Differential Equations</atitle><jtitle>International journal of applied and computational mathematics</jtitle><stitle>Int. J. Appl. Comput. Math</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>10</volume><issue>3</issue><artnum>117</artnum><issn>2349-5103</issn><eissn>2199-5796</eissn><abstract>The decomposition methods such as Daftardar–Jafari method (DJM) have been applied previously to obtain a solution of the fractional differential equations. In the present article, we develop a decomposition method to solve fractional delay differential equations (FDDEs) using Natural Transform and Daftardar–Jafari method. This method is referred to as Natural Dafatardar Jafari Method (NDJM) for fractional delay differential equations. Further we perform a convergence analysis of NDJM for FDDEs and find the error bounds. We demonstrate NDJM for FDDEs with the help of various examples involving FDDEs and systems of FDDEs. We prove that the NDJM for FDDEs is more accurate than the contemporary integral transform methods, simplistic to implement yet more generalized than other transforms, and efficient in each case.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s40819-024-01753-1</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2349-5103 |
ispartof | International journal of applied and computational mathematics, 2024-06, Vol.10 (3), Article 117 |
issn | 2349-5103 2199-5796 |
language | eng |
recordid | cdi_proquest_journals_3068587328 |
source | Springer Link |
subjects | Applications of Mathematics Computational Science and Engineering Decomposition Delay Differential equations Fractional calculus Integral transforms Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Nuclear Energy Operations Research/Decision Theory Original Paper Theoretical |
title | Analysis of Natural Daftardar–Jafari Method for Fractional Delay Differential Equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A38%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Natural%20Daftardar%E2%80%93Jafari%20Method%20for%20Fractional%20Delay%20Differential%20Equations&rft.jtitle=International%20journal%20of%20applied%20and%20computational%20mathematics&rft.au=Mahatekar,%20Yogita&rft.date=2024-06-01&rft.volume=10&rft.issue=3&rft.artnum=117&rft.issn=2349-5103&rft.eissn=2199-5796&rft_id=info:doi/10.1007/s40819-024-01753-1&rft_dat=%3Cproquest_cross%3E3068587328%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1851-6dc06c2f59d9e98959ec648e3e0324b1d18291c8c60a9a6f76f4f8bd6c385c413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3068587328&rft_id=info:pmid/&rfr_iscdi=true |