Loading…
Effect of individual ions on rock-brine-oil interactions: A microcalorimetric approach
Understanding the mechanisms behind the additional oil recovery by low salinity water flooding (LSWF) in carbonates has been difficult because of the complexity of the crude oil + brine + rock system. This study is an attempt to isolate fluid–fluid and rock-fluid interactions through Isothermal Titr...
Saved in:
Published in: | Fuel (Guildford) 2021-04, Vol.290, p.119955, Article 119955 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Understanding the mechanisms behind the additional oil recovery by low salinity water flooding (LSWF) in carbonates has been difficult because of the complexity of the crude oil + brine + rock system. This study is an attempt to isolate fluid–fluid and rock-fluid interactions through Isothermal Titration Calorimetry (ITC) to get a deeper understanding of the oil recovery process. The results from the fluid–fluid interactions pointed out that the observed endothermic response is determined by the formation of micro-dispersions, in which Mg2+ is more active than Ca2+. The incorporation of Ca2+, Mg2+, SO42- and HCO3- onto the chalk lattice effectively does not need energy from the surroundings to proceed. On the other hand, the incorporation of Mg2+ or Ca2+ into the calcite structure in the presence of SO42- is less energetically favorable due to pair creation. |
---|---|
ISSN: | 0016-2361 1873-7153 |
DOI: | 10.1016/j.fuel.2020.119955 |