Loading…

Weak entanglement approximation for nuclear structure

The interacting shell model, a configuration-interaction method, is a venerable approach for low-lying nuclear structure calculations; but it is hampered by the exponential growth of its basis dimension as one increases the single-particle space and/or the number of active particles. Recent, quantum...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-09
Main Authors: Gorton, Oliver C, Johnson, Calvin W
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Gorton, Oliver C
Johnson, Calvin W
description The interacting shell model, a configuration-interaction method, is a venerable approach for low-lying nuclear structure calculations; but it is hampered by the exponential growth of its basis dimension as one increases the single-particle space and/or the number of active particles. Recent, quantum-information-inspired work has demonstrated that the proton and neutron sectors of a nuclear wave function are weakly entangled. Furthermore, the entanglement is smaller for nuclides away from \(N=Z\), such as heavy, neutron-rich nuclides. Here we implement a weak entanglement approximation to bipartite configuration-interaction wave functions, approximating low-lying levels by coupling a relatively small number of many-proton and many-neutron states. This truncation scheme, which we present in the context of past approaches, reduces the basis dimension by many orders of magnitude while preserving essential features of nuclear spectra.
doi_str_mv 10.48550/arxiv.2406.10120
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3068912464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3068912464</sourcerecordid><originalsourceid>FETCH-LOGICAL-a950-edba10b87ef8861c6ed02e57940fb22812db3968326f55d8052b7513277cfd9d3</originalsourceid><addsrcrecordid>eNotjktLw0AURgdBsNT-AHcB14l37sydx1KKLyi4Kbgsk8wdSU2TOkmkP9-Arr6zOucT4k5CpR0RPIR8aX8q1GAqCRLhSqxQKVk6jXgjNuN4BAA0FonUStAHh6-C-yn0nx2fFijC-ZyHS3sKUzv0RRpy0c9NxyEX45TnZpoz34rrFLqRN_-7Fvvnp_32tdy9v7xtH3dl8AQlxzpIqJ3l5JyRjeEIyGS9hlQjOomxVt44hSYRRQeEtSWp0NomRR_VWtz_aZdD3zOP0-E4zLlfigcFxnmJ2mj1CyZrRwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068912464</pqid></control><display><type>article</type><title>Weak entanglement approximation for nuclear structure</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Gorton, Oliver C ; Johnson, Calvin W</creator><creatorcontrib>Gorton, Oliver C ; Johnson, Calvin W</creatorcontrib><description>The interacting shell model, a configuration-interaction method, is a venerable approach for low-lying nuclear structure calculations; but it is hampered by the exponential growth of its basis dimension as one increases the single-particle space and/or the number of active particles. Recent, quantum-information-inspired work has demonstrated that the proton and neutron sectors of a nuclear wave function are weakly entangled. Furthermore, the entanglement is smaller for nuclides away from \(N=Z\), such as heavy, neutron-rich nuclides. Here we implement a weak entanglement approximation to bipartite configuration-interaction wave functions, approximating low-lying levels by coupling a relatively small number of many-proton and many-neutron states. This truncation scheme, which we present in the context of past approaches, reduces the basis dimension by many orders of magnitude while preserving essential features of nuclear spectra.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2406.10120</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Configurations ; Nuclear structure ; Nuclides ; Protons ; Wave functions</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3068912464?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Gorton, Oliver C</creatorcontrib><creatorcontrib>Johnson, Calvin W</creatorcontrib><title>Weak entanglement approximation for nuclear structure</title><title>arXiv.org</title><description>The interacting shell model, a configuration-interaction method, is a venerable approach for low-lying nuclear structure calculations; but it is hampered by the exponential growth of its basis dimension as one increases the single-particle space and/or the number of active particles. Recent, quantum-information-inspired work has demonstrated that the proton and neutron sectors of a nuclear wave function are weakly entangled. Furthermore, the entanglement is smaller for nuclides away from \(N=Z\), such as heavy, neutron-rich nuclides. Here we implement a weak entanglement approximation to bipartite configuration-interaction wave functions, approximating low-lying levels by coupling a relatively small number of many-proton and many-neutron states. This truncation scheme, which we present in the context of past approaches, reduces the basis dimension by many orders of magnitude while preserving essential features of nuclear spectra.</description><subject>Approximation</subject><subject>Configurations</subject><subject>Nuclear structure</subject><subject>Nuclides</subject><subject>Protons</subject><subject>Wave functions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjktLw0AURgdBsNT-AHcB14l37sydx1KKLyi4Kbgsk8wdSU2TOkmkP9-Arr6zOucT4k5CpR0RPIR8aX8q1GAqCRLhSqxQKVk6jXgjNuN4BAA0FonUStAHh6-C-yn0nx2fFijC-ZyHS3sKUzv0RRpy0c9NxyEX45TnZpoz34rrFLqRN_-7Fvvnp_32tdy9v7xtH3dl8AQlxzpIqJ3l5JyRjeEIyGS9hlQjOomxVt44hSYRRQeEtSWp0NomRR_VWtz_aZdD3zOP0-E4zLlfigcFxnmJ2mj1CyZrRwg</recordid><startdate>20240904</startdate><enddate>20240904</enddate><creator>Gorton, Oliver C</creator><creator>Johnson, Calvin W</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240904</creationdate><title>Weak entanglement approximation for nuclear structure</title><author>Gorton, Oliver C ; Johnson, Calvin W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a950-edba10b87ef8861c6ed02e57940fb22812db3968326f55d8052b7513277cfd9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>Configurations</topic><topic>Nuclear structure</topic><topic>Nuclides</topic><topic>Protons</topic><topic>Wave functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Gorton, Oliver C</creatorcontrib><creatorcontrib>Johnson, Calvin W</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorton, Oliver C</au><au>Johnson, Calvin W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak entanglement approximation for nuclear structure</atitle><jtitle>arXiv.org</jtitle><date>2024-09-04</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The interacting shell model, a configuration-interaction method, is a venerable approach for low-lying nuclear structure calculations; but it is hampered by the exponential growth of its basis dimension as one increases the single-particle space and/or the number of active particles. Recent, quantum-information-inspired work has demonstrated that the proton and neutron sectors of a nuclear wave function are weakly entangled. Furthermore, the entanglement is smaller for nuclides away from \(N=Z\), such as heavy, neutron-rich nuclides. Here we implement a weak entanglement approximation to bipartite configuration-interaction wave functions, approximating low-lying levels by coupling a relatively small number of many-proton and many-neutron states. This truncation scheme, which we present in the context of past approaches, reduces the basis dimension by many orders of magnitude while preserving essential features of nuclear spectra.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2406.10120</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_3068912464
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Approximation
Configurations
Nuclear structure
Nuclides
Protons
Wave functions
title Weak entanglement approximation for nuclear structure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A04%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20entanglement%20approximation%20for%20nuclear%20structure&rft.jtitle=arXiv.org&rft.au=Gorton,%20Oliver%20C&rft.date=2024-09-04&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2406.10120&rft_dat=%3Cproquest%3E3068912464%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a950-edba10b87ef8861c6ed02e57940fb22812db3968326f55d8052b7513277cfd9d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3068912464&rft_id=info:pmid/&rfr_iscdi=true