Loading…
Weak entanglement approximation for nuclear structure
The interacting shell model, a configuration-interaction method, is a venerable approach for low-lying nuclear structure calculations; but it is hampered by the exponential growth of its basis dimension as one increases the single-particle space and/or the number of active particles. Recent, quantum...
Saved in:
Published in: | arXiv.org 2024-09 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gorton, Oliver C Johnson, Calvin W |
description | The interacting shell model, a configuration-interaction method, is a venerable approach for low-lying nuclear structure calculations; but it is hampered by the exponential growth of its basis dimension as one increases the single-particle space and/or the number of active particles. Recent, quantum-information-inspired work has demonstrated that the proton and neutron sectors of a nuclear wave function are weakly entangled. Furthermore, the entanglement is smaller for nuclides away from \(N=Z\), such as heavy, neutron-rich nuclides. Here we implement a weak entanglement approximation to bipartite configuration-interaction wave functions, approximating low-lying levels by coupling a relatively small number of many-proton and many-neutron states. This truncation scheme, which we present in the context of past approaches, reduces the basis dimension by many orders of magnitude while preserving essential features of nuclear spectra. |
doi_str_mv | 10.48550/arxiv.2406.10120 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3068912464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3068912464</sourcerecordid><originalsourceid>FETCH-LOGICAL-a950-edba10b87ef8861c6ed02e57940fb22812db3968326f55d8052b7513277cfd9d3</originalsourceid><addsrcrecordid>eNotjktLw0AURgdBsNT-AHcB14l37sydx1KKLyi4Kbgsk8wdSU2TOkmkP9-Arr6zOucT4k5CpR0RPIR8aX8q1GAqCRLhSqxQKVk6jXgjNuN4BAA0FonUStAHh6-C-yn0nx2fFijC-ZyHS3sKUzv0RRpy0c9NxyEX45TnZpoz34rrFLqRN_-7Fvvnp_32tdy9v7xtH3dl8AQlxzpIqJ3l5JyRjeEIyGS9hlQjOomxVt44hSYRRQeEtSWp0NomRR_VWtz_aZdD3zOP0-E4zLlfigcFxnmJ2mj1CyZrRwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068912464</pqid></control><display><type>article</type><title>Weak entanglement approximation for nuclear structure</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Gorton, Oliver C ; Johnson, Calvin W</creator><creatorcontrib>Gorton, Oliver C ; Johnson, Calvin W</creatorcontrib><description>The interacting shell model, a configuration-interaction method, is a venerable approach for low-lying nuclear structure calculations; but it is hampered by the exponential growth of its basis dimension as one increases the single-particle space and/or the number of active particles. Recent, quantum-information-inspired work has demonstrated that the proton and neutron sectors of a nuclear wave function are weakly entangled. Furthermore, the entanglement is smaller for nuclides away from \(N=Z\), such as heavy, neutron-rich nuclides. Here we implement a weak entanglement approximation to bipartite configuration-interaction wave functions, approximating low-lying levels by coupling a relatively small number of many-proton and many-neutron states. This truncation scheme, which we present in the context of past approaches, reduces the basis dimension by many orders of magnitude while preserving essential features of nuclear spectra.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2406.10120</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Configurations ; Nuclear structure ; Nuclides ; Protons ; Wave functions</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3068912464?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Gorton, Oliver C</creatorcontrib><creatorcontrib>Johnson, Calvin W</creatorcontrib><title>Weak entanglement approximation for nuclear structure</title><title>arXiv.org</title><description>The interacting shell model, a configuration-interaction method, is a venerable approach for low-lying nuclear structure calculations; but it is hampered by the exponential growth of its basis dimension as one increases the single-particle space and/or the number of active particles. Recent, quantum-information-inspired work has demonstrated that the proton and neutron sectors of a nuclear wave function are weakly entangled. Furthermore, the entanglement is smaller for nuclides away from \(N=Z\), such as heavy, neutron-rich nuclides. Here we implement a weak entanglement approximation to bipartite configuration-interaction wave functions, approximating low-lying levels by coupling a relatively small number of many-proton and many-neutron states. This truncation scheme, which we present in the context of past approaches, reduces the basis dimension by many orders of magnitude while preserving essential features of nuclear spectra.</description><subject>Approximation</subject><subject>Configurations</subject><subject>Nuclear structure</subject><subject>Nuclides</subject><subject>Protons</subject><subject>Wave functions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjktLw0AURgdBsNT-AHcB14l37sydx1KKLyi4Kbgsk8wdSU2TOkmkP9-Arr6zOucT4k5CpR0RPIR8aX8q1GAqCRLhSqxQKVk6jXgjNuN4BAA0FonUStAHh6-C-yn0nx2fFijC-ZyHS3sKUzv0RRpy0c9NxyEX45TnZpoz34rrFLqRN_-7Fvvnp_32tdy9v7xtH3dl8AQlxzpIqJ3l5JyRjeEIyGS9hlQjOomxVt44hSYRRQeEtSWp0NomRR_VWtz_aZdD3zOP0-E4zLlfigcFxnmJ2mj1CyZrRwg</recordid><startdate>20240904</startdate><enddate>20240904</enddate><creator>Gorton, Oliver C</creator><creator>Johnson, Calvin W</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240904</creationdate><title>Weak entanglement approximation for nuclear structure</title><author>Gorton, Oliver C ; Johnson, Calvin W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a950-edba10b87ef8861c6ed02e57940fb22812db3968326f55d8052b7513277cfd9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>Configurations</topic><topic>Nuclear structure</topic><topic>Nuclides</topic><topic>Protons</topic><topic>Wave functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Gorton, Oliver C</creatorcontrib><creatorcontrib>Johnson, Calvin W</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorton, Oliver C</au><au>Johnson, Calvin W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak entanglement approximation for nuclear structure</atitle><jtitle>arXiv.org</jtitle><date>2024-09-04</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The interacting shell model, a configuration-interaction method, is a venerable approach for low-lying nuclear structure calculations; but it is hampered by the exponential growth of its basis dimension as one increases the single-particle space and/or the number of active particles. Recent, quantum-information-inspired work has demonstrated that the proton and neutron sectors of a nuclear wave function are weakly entangled. Furthermore, the entanglement is smaller for nuclides away from \(N=Z\), such as heavy, neutron-rich nuclides. Here we implement a weak entanglement approximation to bipartite configuration-interaction wave functions, approximating low-lying levels by coupling a relatively small number of many-proton and many-neutron states. This truncation scheme, which we present in the context of past approaches, reduces the basis dimension by many orders of magnitude while preserving essential features of nuclear spectra.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2406.10120</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3068912464 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Approximation Configurations Nuclear structure Nuclides Protons Wave functions |
title | Weak entanglement approximation for nuclear structure |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A04%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20entanglement%20approximation%20for%20nuclear%20structure&rft.jtitle=arXiv.org&rft.au=Gorton,%20Oliver%20C&rft.date=2024-09-04&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2406.10120&rft_dat=%3Cproquest%3E3068912464%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a950-edba10b87ef8861c6ed02e57940fb22812db3968326f55d8052b7513277cfd9d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3068912464&rft_id=info:pmid/&rfr_iscdi=true |