Loading…
Metalated covalent organic frameworks as efficient catalysts for multicomponent tandem reactions
Multicomponent tandem reactions have become indispensable synthetic methods due to their economic advantages and efficient usage in natural products and drug synthesis. The emergence of metalated covalent organic frameworks (MCOFs) has opened up new opportunities for the advancement of multicomponen...
Saved in:
Published in: | Chemical communications (Cambridge, England) England), 2024-06, Vol.6 (5), p.6362-6374 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Multicomponent tandem reactions have become indispensable synthetic methods due to their economic advantages and efficient usage in natural products and drug synthesis. The emergence of metalated covalent organic frameworks (MCOFs) has opened up new opportunities for the advancement of multicomponent tandem reactions. In contrast to commonly used homogeneous transition metal catalysts, MCOFs possess regular porosity, high crystallinity, and rich metal chelation sites that facilitate the uniform distribution and anchoring of metals within their cavities. Thus, they show extremely high activity and have recently been widely employed as catalysts for multicomponent tandem reactions. It is timely to conduct a review of MCOFs in multicomponent tandem reactions, in order to offer guidance and assistance for the synthesis of MCOF catalysts and their application in multicomponent tandem reactions. This review provides a comprehensive overview of the design and synthesis of MCOFs, their application and progress in multicomponent tandem reactions, and the primary challenges encountered during their current development with the aim of contributing to the promotion of the field.
This review provides a comprehensive and up-to-date overview of the types of MCOF-based catalysts and their applications in multicomponent tandem reactions. |
---|---|
ISSN: | 1359-7345 1364-548X 1364-548X |
DOI: | 10.1039/d4cc01743a |