Loading…

Model-based scenarios for achieving net negative emissions in the food system

Most climate mitigation scenarios point to a combination of GHG emission reductions and CO 2 removal for avoiding the most dangerous climate change impacts this century. The global food system is responsible for ~1/3 of GHG emissions and thus plays an important role in reaching emission targets. Con...

Full description

Saved in:
Bibliographic Details
Published in:PLOS climate 2023-09, Vol.2 (9), p.e0000181
Main Authors: Almaraz, Maya, Houlton, Benjamin Z., Clark, Michael, Holzer, Iris, Zhou, Yanqiu, Rasmussen, Laura, Moberg, Emily, Manaigo, Erin, Halpern, Benjamin S., Scarborough, Courtney, Lei, Xin Gen, Ho, Melissa, Allison, Edward, Sibanda, Lindiwe, Salter, Andrew
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Most climate mitigation scenarios point to a combination of GHG emission reductions and CO 2 removal for avoiding the most dangerous climate change impacts this century. The global food system is responsible for ~1/3 of GHG emissions and thus plays an important role in reaching emission targets. Consumers, technology innovation, industry, and agricultural practices offer various degrees of opportunity to reduce emissions and remove CO 2 . However, a question remains as to whether food system transformation can achieve net negative emissions (i.e., where GHG sinks exceed sources sector wide) and what the capacity of the different levers may be. We use a global food system model to explore the influence of consumer choice, climate-smart agro-industrial technologies, and food waste reductions for achieving net negative emissions for the year 2050. We analyze an array of scenarios under the conditions of full yield gap closures and caloric demands in a world with 10 billion people. Our results reveal a high-end capacity of 33 gigatonnes of net negative emissions per annum via complete food system transformation, which assumes full global deployment of behavioral-, management- and technology-based interventions. The most promising technologies for achieving net negative emissions include hydrogen-powered fertilizer production, livestock feeds, organic and inorganic soil amendments, agroforestry, and sustainable seafood harvesting practices. On the consumer side, adopting flexitarian diets cannot achieve full decarbonization of the food system but has the potential to increase the magnitude of net negative emissions when combined with technology scale-up. GHG reductions ascribed to a mixture of technology deployment and dietary shifts emerge for many different countries, with areas of high ruminant production and non-intensive agricultural systems showing the greatest per capita benefits. This analysis highlights potential for future food systems to achieve net negative emissions using multifaceted “cradle-to-grave” and “land-to-sea” emission reduction strategies that embrace emerging climate-smart agro-industrial technologies.
ISSN:2767-3200
2767-3200
DOI:10.1371/journal.pclm.0000181