Loading…

Stochastic resonance in the small-world networks with higher order neural motifs interactions

Transmission of weak signals in neural networks is crucial for understanding the functionality of brain. In this work, stochastic resonance (SR) in the three neuron FitzHugh–Nagumo (FHN) motifs and its small-world network with higher order motif interactions are studied. Simulation results show that...

Full description

Saved in:
Bibliographic Details
Published in:The European physical journal. ST, Special topics Special topics, 2024, Vol.233 (4), p.797-806
Main Authors: Li, Tianyu, Yu, Dong, Wu, Yong, Ding, Qianming, Jia, Ya
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Transmission of weak signals in neural networks is crucial for understanding the functionality of brain. In this work, stochastic resonance (SR) in the three neuron FitzHugh–Nagumo (FHN) motifs and its small-world network with higher order motif interactions are studied. Simulation results show that a single motif induces SR and responds better to high-frequency weak signal. Stronger coupling strength within the motif increases the firing rate of the output neurons, resulting in a more pronounced resonance. Considering only the connections within the motif, a higher in-degree of the output neuron or a shorter minimum path length between input and output neurons will lead to a better response to weak signals. SR phenomena can also be observed in small-world networks composed of these motif. Increasing whether the motif coupling or node coupling strength enhances the firing rate of output neurons, amplifying the response. There is a very strong correlation between firing rate of output neurons and response. Our results may provide insights into the propagation of weak signals in higher order networks and the selection of appropriate network topology.
ISSN:1951-6355
1951-6401
DOI:10.1140/epjs/s11734-024-01139-w