Loading…

Upgraded free independence phenomena for random unitaries

We study upgraded free independence phenomena for unitary elements \(u_1\), \(u_2\), \dots representing the large-\(n\) limit of Haar random unitaries, showing that free independence extends to several larger algebras containing \(u_j\) in the ultraproduct of matrices \(\prod_{n \to \mathcal{U}} M_n...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-06
Main Authors: Jekel, David, Elayavalli, Srivatsav Kunnawalkam
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Jekel, David
Elayavalli, Srivatsav Kunnawalkam
description We study upgraded free independence phenomena for unitary elements \(u_1\), \(u_2\), \dots representing the large-\(n\) limit of Haar random unitaries, showing that free independence extends to several larger algebras containing \(u_j\) in the ultraproduct of matrices \(\prod_{n \to \mathcal{U}} M_n(\mathbb{C})\). Using a uniform asymptotic freeness argument and volumetric analysis, we prove free independence of the Pinsker algebras \(\mathcal{P}_j\) containing \(u_j\). The Pinsker algebra \(\mathcal{P}_j\) is the maximal subalgebra containing \(u_j\) with vanishing \(1\)-bounded entropy defined by Hayes; \(\mathcal{P}_j\) in particular contains the relative commutant \(\{u_j\}' \cap \prod_{n \to \mathcal{U}} M_n(\mathbb{C})\), more generally any unitary that can be connected to \(u_j\) by a sequence of commuting pairs of Haar unitaries, and any unitary \(v\) such that \(v\mathcal{P}_j v^* \cap \mathcal{P}_j\) is diffuse. Through an embedding argument, we go back and deduce analogous free independence results for \(\mathcal{M}^{\mathcal{U}}\) when \(\mathcal{M}\) is a free product of Connes embeddable tracial von Neumann algebras \(\mathcal{M}_i\), which thus yields (in the Connes-embeddable case) a generalization and a new proof of Houdayer--Ioana's results on free independence of approximate commutants. It also yields a new proof of the general absorption results for Connes-embeddable free products obtained by the first author, Hayes, Nelson, and Sinclair.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3070846603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3070846603</sourcerecordid><originalsourceid>FETCH-proquest_journals_30708466033</originalsourceid><addsrcrecordid>eNqNikEKwjAQAIMgWLR_CHguxGyb1rMoPkDPJZiNpthN3LT_twcf4GXmMLMShQY4VF2t9UaUOQ9KKW1a3TRQiOM9Pdk6dNIzogzkMOECeqBML6Q4IlnpI0u25OIoZwqT5YB5J9bevjOWP2_F_nK-na5V4viZMU_9EGemJfWgWtXVxiiA_64vrME2zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070846603</pqid></control><display><type>article</type><title>Upgraded free independence phenomena for random unitaries</title><source>Publicly Available Content Database</source><creator>Jekel, David ; Elayavalli, Srivatsav Kunnawalkam</creator><creatorcontrib>Jekel, David ; Elayavalli, Srivatsav Kunnawalkam</creatorcontrib><description>We study upgraded free independence phenomena for unitary elements \(u_1\), \(u_2\), \dots representing the large-\(n\) limit of Haar random unitaries, showing that free independence extends to several larger algebras containing \(u_j\) in the ultraproduct of matrices \(\prod_{n \to \mathcal{U}} M_n(\mathbb{C})\). Using a uniform asymptotic freeness argument and volumetric analysis, we prove free independence of the Pinsker algebras \(\mathcal{P}_j\) containing \(u_j\). The Pinsker algebra \(\mathcal{P}_j\) is the maximal subalgebra containing \(u_j\) with vanishing \(1\)-bounded entropy defined by Hayes; \(\mathcal{P}_j\) in particular contains the relative commutant \(\{u_j\}' \cap \prod_{n \to \mathcal{U}} M_n(\mathbb{C})\), more generally any unitary that can be connected to \(u_j\) by a sequence of commuting pairs of Haar unitaries, and any unitary \(v\) such that \(v\mathcal{P}_j v^* \cap \mathcal{P}_j\) is diffuse. Through an embedding argument, we go back and deduce analogous free independence results for \(\mathcal{M}^{\mathcal{U}}\) when \(\mathcal{M}\) is a free product of Connes embeddable tracial von Neumann algebras \(\mathcal{M}_i\), which thus yields (in the Connes-embeddable case) a generalization and a new proof of Houdayer--Ioana's results on free independence of approximate commutants. It also yields a new proof of the general absorption results for Connes-embeddable free products obtained by the first author, Hayes, Nelson, and Sinclair.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Volumetric analysis</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3070846603?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Jekel, David</creatorcontrib><creatorcontrib>Elayavalli, Srivatsav Kunnawalkam</creatorcontrib><title>Upgraded free independence phenomena for random unitaries</title><title>arXiv.org</title><description>We study upgraded free independence phenomena for unitary elements \(u_1\), \(u_2\), \dots representing the large-\(n\) limit of Haar random unitaries, showing that free independence extends to several larger algebras containing \(u_j\) in the ultraproduct of matrices \(\prod_{n \to \mathcal{U}} M_n(\mathbb{C})\). Using a uniform asymptotic freeness argument and volumetric analysis, we prove free independence of the Pinsker algebras \(\mathcal{P}_j\) containing \(u_j\). The Pinsker algebra \(\mathcal{P}_j\) is the maximal subalgebra containing \(u_j\) with vanishing \(1\)-bounded entropy defined by Hayes; \(\mathcal{P}_j\) in particular contains the relative commutant \(\{u_j\}' \cap \prod_{n \to \mathcal{U}} M_n(\mathbb{C})\), more generally any unitary that can be connected to \(u_j\) by a sequence of commuting pairs of Haar unitaries, and any unitary \(v\) such that \(v\mathcal{P}_j v^* \cap \mathcal{P}_j\) is diffuse. Through an embedding argument, we go back and deduce analogous free independence results for \(\mathcal{M}^{\mathcal{U}}\) when \(\mathcal{M}\) is a free product of Connes embeddable tracial von Neumann algebras \(\mathcal{M}_i\), which thus yields (in the Connes-embeddable case) a generalization and a new proof of Houdayer--Ioana's results on free independence of approximate commutants. It also yields a new proof of the general absorption results for Connes-embeddable free products obtained by the first author, Hayes, Nelson, and Sinclair.</description><subject>Volumetric analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNikEKwjAQAIMgWLR_CHguxGyb1rMoPkDPJZiNpthN3LT_twcf4GXmMLMShQY4VF2t9UaUOQ9KKW1a3TRQiOM9Pdk6dNIzogzkMOECeqBML6Q4IlnpI0u25OIoZwqT5YB5J9bevjOWP2_F_nK-na5V4viZMU_9EGemJfWgWtXVxiiA_64vrME2zw</recordid><startdate>20240620</startdate><enddate>20240620</enddate><creator>Jekel, David</creator><creator>Elayavalli, Srivatsav Kunnawalkam</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240620</creationdate><title>Upgraded free independence phenomena for random unitaries</title><author>Jekel, David ; Elayavalli, Srivatsav Kunnawalkam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30708466033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Volumetric analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Jekel, David</creatorcontrib><creatorcontrib>Elayavalli, Srivatsav Kunnawalkam</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jekel, David</au><au>Elayavalli, Srivatsav Kunnawalkam</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Upgraded free independence phenomena for random unitaries</atitle><jtitle>arXiv.org</jtitle><date>2024-06-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We study upgraded free independence phenomena for unitary elements \(u_1\), \(u_2\), \dots representing the large-\(n\) limit of Haar random unitaries, showing that free independence extends to several larger algebras containing \(u_j\) in the ultraproduct of matrices \(\prod_{n \to \mathcal{U}} M_n(\mathbb{C})\). Using a uniform asymptotic freeness argument and volumetric analysis, we prove free independence of the Pinsker algebras \(\mathcal{P}_j\) containing \(u_j\). The Pinsker algebra \(\mathcal{P}_j\) is the maximal subalgebra containing \(u_j\) with vanishing \(1\)-bounded entropy defined by Hayes; \(\mathcal{P}_j\) in particular contains the relative commutant \(\{u_j\}' \cap \prod_{n \to \mathcal{U}} M_n(\mathbb{C})\), more generally any unitary that can be connected to \(u_j\) by a sequence of commuting pairs of Haar unitaries, and any unitary \(v\) such that \(v\mathcal{P}_j v^* \cap \mathcal{P}_j\) is diffuse. Through an embedding argument, we go back and deduce analogous free independence results for \(\mathcal{M}^{\mathcal{U}}\) when \(\mathcal{M}\) is a free product of Connes embeddable tracial von Neumann algebras \(\mathcal{M}_i\), which thus yields (in the Connes-embeddable case) a generalization and a new proof of Houdayer--Ioana's results on free independence of approximate commutants. It also yields a new proof of the general absorption results for Connes-embeddable free products obtained by the first author, Hayes, Nelson, and Sinclair.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_3070846603
source Publicly Available Content Database
subjects Volumetric analysis
title Upgraded free independence phenomena for random unitaries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A31%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Upgraded%20free%20independence%20phenomena%20for%20random%20unitaries&rft.jtitle=arXiv.org&rft.au=Jekel,%20David&rft.date=2024-06-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3070846603%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30708466033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3070846603&rft_id=info:pmid/&rfr_iscdi=true