Loading…
High-threshold, low-overhead and single-shot decodable fault-tolerant quantum memory
We present a new family of quantum low-density parity-check codes, which we call radial codes, obtained from the lifted product of a specific subset of classical quasi-cyclic codes. The codes are defined using a pair of integers \((r,s)\) and have parameters \([\![2r^2s,2(r-1)^2,\leq2s]\!]\), with n...
Saved in:
Published in: | arXiv.org 2024-06 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Scruby, Thomas R Hillmann, Timo Roffe, Joschka |
description | We present a new family of quantum low-density parity-check codes, which we call radial codes, obtained from the lifted product of a specific subset of classical quasi-cyclic codes. The codes are defined using a pair of integers \((r,s)\) and have parameters \([\![2r^2s,2(r-1)^2,\leq2s]\!]\), with numerical studies suggesting average-case distance linear in \(s\). In simulations of circuit-level noise, we observe comparable error suppression to surface codes of similar distance while using approximately five times fewer physical qubits. This is true even when radial codes are decoded using a single-shot approach, which can allow for faster logical clock speeds and reduced decoding complexity. We describe an intuitive visual representation, canonical basis of logical operators and optimal-length stabiliser measurement circuits for these codes, and argue that their error correction capabilities, tunable parameters and small size make them promising candidates for implementation on near-term quantum devices. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3070869318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3070869318</sourcerecordid><originalsourceid>FETCH-proquest_journals_30708693183</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3CLg1kCb241qUHsB9iea1aUn7bD6Kt7cLD-BmZjGzIomQMmPVUYgNSb0fOOeiKEWey4Tc6r4zLBgH3qDVB2rxzfAFzoDSVE2a-n7qLLAlB6rhgVrdLdBWRRtYQAtOTYHOcWEc6Qgjus-OrFtlPaQ_b8n-ermda_Z0OEfwoRkwumlJjeQlr4qTzCr53_UFt5hBDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070869318</pqid></control><display><type>article</type><title>High-threshold, low-overhead and single-shot decodable fault-tolerant quantum memory</title><source>Publicly Available Content (ProQuest)</source><creator>Scruby, Thomas R ; Hillmann, Timo ; Roffe, Joschka</creator><creatorcontrib>Scruby, Thomas R ; Hillmann, Timo ; Roffe, Joschka</creatorcontrib><description>We present a new family of quantum low-density parity-check codes, which we call radial codes, obtained from the lifted product of a specific subset of classical quasi-cyclic codes. The codes are defined using a pair of integers \((r,s)\) and have parameters \([\![2r^2s,2(r-1)^2,\leq2s]\!]\), with numerical studies suggesting average-case distance linear in \(s\). In simulations of circuit-level noise, we observe comparable error suppression to surface codes of similar distance while using approximately five times fewer physical qubits. This is true even when radial codes are decoded using a single-shot approach, which can allow for faster logical clock speeds and reduced decoding complexity. We describe an intuitive visual representation, canonical basis of logical operators and optimal-length stabiliser measurement circuits for these codes, and argue that their error correction capabilities, tunable parameters and small size make them promising candidates for implementation on near-term quantum devices.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Decoding ; Error correcting codes ; Error correction ; Fault tolerance ; Parameters ; Quantum phenomena ; Qubits (quantum computing)</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3070869318?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Scruby, Thomas R</creatorcontrib><creatorcontrib>Hillmann, Timo</creatorcontrib><creatorcontrib>Roffe, Joschka</creatorcontrib><title>High-threshold, low-overhead and single-shot decodable fault-tolerant quantum memory</title><title>arXiv.org</title><description>We present a new family of quantum low-density parity-check codes, which we call radial codes, obtained from the lifted product of a specific subset of classical quasi-cyclic codes. The codes are defined using a pair of integers \((r,s)\) and have parameters \([\![2r^2s,2(r-1)^2,\leq2s]\!]\), with numerical studies suggesting average-case distance linear in \(s\). In simulations of circuit-level noise, we observe comparable error suppression to surface codes of similar distance while using approximately five times fewer physical qubits. This is true even when radial codes are decoded using a single-shot approach, which can allow for faster logical clock speeds and reduced decoding complexity. We describe an intuitive visual representation, canonical basis of logical operators and optimal-length stabiliser measurement circuits for these codes, and argue that their error correction capabilities, tunable parameters and small size make them promising candidates for implementation on near-term quantum devices.</description><subject>Decoding</subject><subject>Error correcting codes</subject><subject>Error correction</subject><subject>Fault tolerance</subject><subject>Parameters</subject><subject>Quantum phenomena</subject><subject>Qubits (quantum computing)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNiksKwjAUAIMgWLR3CLg1kCb241qUHsB9iea1aUn7bD6Kt7cLD-BmZjGzIomQMmPVUYgNSb0fOOeiKEWey4Tc6r4zLBgH3qDVB2rxzfAFzoDSVE2a-n7qLLAlB6rhgVrdLdBWRRtYQAtOTYHOcWEc6Qgjus-OrFtlPaQ_b8n-ermda_Z0OEfwoRkwumlJjeQlr4qTzCr53_UFt5hBDw</recordid><startdate>20240620</startdate><enddate>20240620</enddate><creator>Scruby, Thomas R</creator><creator>Hillmann, Timo</creator><creator>Roffe, Joschka</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240620</creationdate><title>High-threshold, low-overhead and single-shot decodable fault-tolerant quantum memory</title><author>Scruby, Thomas R ; Hillmann, Timo ; Roffe, Joschka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30708693183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Decoding</topic><topic>Error correcting codes</topic><topic>Error correction</topic><topic>Fault tolerance</topic><topic>Parameters</topic><topic>Quantum phenomena</topic><topic>Qubits (quantum computing)</topic><toplevel>online_resources</toplevel><creatorcontrib>Scruby, Thomas R</creatorcontrib><creatorcontrib>Hillmann, Timo</creatorcontrib><creatorcontrib>Roffe, Joschka</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scruby, Thomas R</au><au>Hillmann, Timo</au><au>Roffe, Joschka</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>High-threshold, low-overhead and single-shot decodable fault-tolerant quantum memory</atitle><jtitle>arXiv.org</jtitle><date>2024-06-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We present a new family of quantum low-density parity-check codes, which we call radial codes, obtained from the lifted product of a specific subset of classical quasi-cyclic codes. The codes are defined using a pair of integers \((r,s)\) and have parameters \([\![2r^2s,2(r-1)^2,\leq2s]\!]\), with numerical studies suggesting average-case distance linear in \(s\). In simulations of circuit-level noise, we observe comparable error suppression to surface codes of similar distance while using approximately five times fewer physical qubits. This is true even when radial codes are decoded using a single-shot approach, which can allow for faster logical clock speeds and reduced decoding complexity. We describe an intuitive visual representation, canonical basis of logical operators and optimal-length stabiliser measurement circuits for these codes, and argue that their error correction capabilities, tunable parameters and small size make them promising candidates for implementation on near-term quantum devices.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3070869318 |
source | Publicly Available Content (ProQuest) |
subjects | Decoding Error correcting codes Error correction Fault tolerance Parameters Quantum phenomena Qubits (quantum computing) |
title | High-threshold, low-overhead and single-shot decodable fault-tolerant quantum memory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A31%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=High-threshold,%20low-overhead%20and%20single-shot%20decodable%20fault-tolerant%20quantum%20memory&rft.jtitle=arXiv.org&rft.au=Scruby,%20Thomas%20R&rft.date=2024-06-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3070869318%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30708693183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3070869318&rft_id=info:pmid/&rfr_iscdi=true |