Loading…
Improving tubular protonic ceramic fuel cell performance by compensating Ba evaporation via a Ba-excess optimized proton conducting electrolyte synthesis strategy
Protonic ceramic fuel cells (PCFCs) are emerging as a promising technology for reduced temperature ceramic energy conversion devices. The BaCe 0.4 Zr 0.4 Y 0.1 Yb 0.1 O 3− δ (BCZYYb4411) electrolyte is notable for its high proton conductivity. However, the tendency of barium to volatilize in BCZYYb4...
Saved in:
Published in: | JPhys Energy 2024-07, Vol.6 (3), p.35004 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c362t-b1d802215d420db89f1b0844a9960af79778c6c2737741e733a110c66322a3333 |
container_end_page | |
container_issue | 3 |
container_start_page | 35004 |
container_title | JPhys Energy |
container_volume | 6 |
creator | Kim, You-Dong Kim, In-Ho Meisel, Charlie Herradón, Carolina Rand, Peter W Yang, Jayoon Kim, Hyun Sik Sullivan, Neal P O’Hayre, Ryan |
description | Protonic ceramic fuel cells (PCFCs) are emerging as a promising technology for reduced temperature ceramic energy conversion devices. The BaCe
0.4
Zr
0.4
Y
0.1
Yb
0.1
O
3−
δ
(BCZYYb4411) electrolyte is notable for its high proton conductivity. However, the tendency of barium to volatilize in BCZYYb4411 during high-temperature sintering compromises its chemical stability and performance. This study investigates the effects of intentionally incorporating excess barium into BCZYYb4411, formulated as Ba
1+
x
Ce
0.4
Zr
0.4
Y
0.1
Yb
0.1
O
3−
δ
(where
x
= 0, 0.1, 0.2, and 0.3), with the aim of compensating barium evaporation and enhancing the physical and chemical properties. We find that excess barium results in a greater shrinkage rate, facilitating a denser electrolyte structure. This barium-enriched electrolyte demonstrates improved electrochemical performance by effectively counteracting the deleterious effects of barium evaporation. Applying this strategy to tubular PCFCs, we achieved a peak power density of 480 mW∙cm
−2
at 600 °C. This unique approach provides a simple, tunable, and easy-to-implement processing modification to achieve high-performance tubular PCFC. |
doi_str_mv | 10.1088/2515-7655/ad5760 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_3071084664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b5562ea69308410da93714bbc7713f56</doaj_id><sourcerecordid>3071084664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-b1d802215d420db89f1b0844a9960af79778c6c2737741e733a110c66322a3333</originalsourceid><addsrcrecordid>eNp9UU1v1TAQjBBIVKV3jhYcIdQfsZ0coYL2SZW4wNnaOJtXPyVxsJ0n0p_DL8WvqQoHhC_rWc3Mej1F8ZrRD4zW9SWXTJZaSXkJndSKPivOnlrP_7q_LC5iPFBKeS2VZvSs-LUb5-CPbtqTtLTLAIFknPzkLLEYYMy1X3DIYBjIjKH3YYTJImlXYv044xQhneSfgOARZh8y9BM5OiCQmyX-tBgj8XNyo7vH7tE_i6dusQ9SHNCm4Ic1IYnrlO4wukhiyla4X18VL3oYIl481vPi-5fP365uytuv17urj7elFYqnsmVdTTlnsqs47dq66VlL66qCplEUet1oXVtluRZaVwy1EMAYtUoJzkHkc17sNt_Ow8HMwY0QVuPBmYeGD3sDITk7oGmlVBxBNSJPYLSDRmhWta3Vmolequz1ZvPyMTkTrUto7_LGU17UcKEVFyfS242Uf-THgjGZg1_ClHc0guZ06kqpKrPoxrLBxxiwf3oao-aUvjnFa07xmi39LHm_SZyf_3j-h_7uH_RDjhbDfjXKCEOFpLQyc9eL33I4wFw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3071084664</pqid></control><display><type>article</type><title>Improving tubular protonic ceramic fuel cell performance by compensating Ba evaporation via a Ba-excess optimized proton conducting electrolyte synthesis strategy</title><source>Publicly Available Content Database</source><creator>Kim, You-Dong ; Kim, In-Ho ; Meisel, Charlie ; Herradón, Carolina ; Rand, Peter W ; Yang, Jayoon ; Kim, Hyun Sik ; Sullivan, Neal P ; O’Hayre, Ryan</creator><creatorcontrib>Kim, You-Dong ; Kim, In-Ho ; Meisel, Charlie ; Herradón, Carolina ; Rand, Peter W ; Yang, Jayoon ; Kim, Hyun Sik ; Sullivan, Neal P ; O’Hayre, Ryan</creatorcontrib><description>Protonic ceramic fuel cells (PCFCs) are emerging as a promising technology for reduced temperature ceramic energy conversion devices. The BaCe
0.4
Zr
0.4
Y
0.1
Yb
0.1
O
3−
δ
(BCZYYb4411) electrolyte is notable for its high proton conductivity. However, the tendency of barium to volatilize in BCZYYb4411 during high-temperature sintering compromises its chemical stability and performance. This study investigates the effects of intentionally incorporating excess barium into BCZYYb4411, formulated as Ba
1+
x
Ce
0.4
Zr
0.4
Y
0.1
Yb
0.1
O
3−
δ
(where
x
= 0, 0.1, 0.2, and 0.3), with the aim of compensating barium evaporation and enhancing the physical and chemical properties. We find that excess barium results in a greater shrinkage rate, facilitating a denser electrolyte structure. This barium-enriched electrolyte demonstrates improved electrochemical performance by effectively counteracting the deleterious effects of barium evaporation. Applying this strategy to tubular PCFCs, we achieved a peak power density of 480 mW∙cm
−2
at 600 °C. This unique approach provides a simple, tunable, and easy-to-implement processing modification to achieve high-performance tubular PCFC.</description><identifier>ISSN: 2515-7655</identifier><identifier>EISSN: 2515-7655</identifier><identifier>DOI: 10.1088/2515-7655/ad5760</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Barium ; barium evaporation ; Ceramics ; Chemical properties ; Electrochemical analysis ; Electrolytic cells ; Energy conversion ; Evaporation ; Fuel cells ; High temperature ; protonic ceramic electrolyte ; protonic ceramic fuel cells ; Protons ; reducing sintering temperature ; tubular protonic ceramic fuel cells</subject><ispartof>JPhys Energy, 2024-07, Vol.6 (3), p.35004</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><rights>2024 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c362t-b1d802215d420db89f1b0844a9960af79778c6c2737741e733a110c66322a3333</cites><orcidid>0000-0002-8621-678X ; 0000-0003-0844-5947 ; 0000-0002-5896-6292 ; 0000-0003-3762-3052 ; 000000028621678X ; 0000000258966292 ; 0000000308445947 ; 0000000337623052</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3071084664?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,25735,27906,27907,36994,44572</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2376236$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, You-Dong</creatorcontrib><creatorcontrib>Kim, In-Ho</creatorcontrib><creatorcontrib>Meisel, Charlie</creatorcontrib><creatorcontrib>Herradón, Carolina</creatorcontrib><creatorcontrib>Rand, Peter W</creatorcontrib><creatorcontrib>Yang, Jayoon</creatorcontrib><creatorcontrib>Kim, Hyun Sik</creatorcontrib><creatorcontrib>Sullivan, Neal P</creatorcontrib><creatorcontrib>O’Hayre, Ryan</creatorcontrib><title>Improving tubular protonic ceramic fuel cell performance by compensating Ba evaporation via a Ba-excess optimized proton conducting electrolyte synthesis strategy</title><title>JPhys Energy</title><addtitle>JPhysEnergy</addtitle><addtitle>J. Phys. Energy</addtitle><description>Protonic ceramic fuel cells (PCFCs) are emerging as a promising technology for reduced temperature ceramic energy conversion devices. The BaCe
0.4
Zr
0.4
Y
0.1
Yb
0.1
O
3−
δ
(BCZYYb4411) electrolyte is notable for its high proton conductivity. However, the tendency of barium to volatilize in BCZYYb4411 during high-temperature sintering compromises its chemical stability and performance. This study investigates the effects of intentionally incorporating excess barium into BCZYYb4411, formulated as Ba
1+
x
Ce
0.4
Zr
0.4
Y
0.1
Yb
0.1
O
3−
δ
(where
x
= 0, 0.1, 0.2, and 0.3), with the aim of compensating barium evaporation and enhancing the physical and chemical properties. We find that excess barium results in a greater shrinkage rate, facilitating a denser electrolyte structure. This barium-enriched electrolyte demonstrates improved electrochemical performance by effectively counteracting the deleterious effects of barium evaporation. Applying this strategy to tubular PCFCs, we achieved a peak power density of 480 mW∙cm
−2
at 600 °C. This unique approach provides a simple, tunable, and easy-to-implement processing modification to achieve high-performance tubular PCFC.</description><subject>Barium</subject><subject>barium evaporation</subject><subject>Ceramics</subject><subject>Chemical properties</subject><subject>Electrochemical analysis</subject><subject>Electrolytic cells</subject><subject>Energy conversion</subject><subject>Evaporation</subject><subject>Fuel cells</subject><subject>High temperature</subject><subject>protonic ceramic electrolyte</subject><subject>protonic ceramic fuel cells</subject><subject>Protons</subject><subject>reducing sintering temperature</subject><subject>tubular protonic ceramic fuel cells</subject><issn>2515-7655</issn><issn>2515-7655</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UU1v1TAQjBBIVKV3jhYcIdQfsZ0coYL2SZW4wNnaOJtXPyVxsJ0n0p_DL8WvqQoHhC_rWc3Mej1F8ZrRD4zW9SWXTJZaSXkJndSKPivOnlrP_7q_LC5iPFBKeS2VZvSs-LUb5-CPbtqTtLTLAIFknPzkLLEYYMy1X3DIYBjIjKH3YYTJImlXYv044xQhneSfgOARZh8y9BM5OiCQmyX-tBgj8XNyo7vH7tE_i6dusQ9SHNCm4Ic1IYnrlO4wukhiyla4X18VL3oYIl481vPi-5fP365uytuv17urj7elFYqnsmVdTTlnsqs47dq66VlL66qCplEUet1oXVtluRZaVwy1EMAYtUoJzkHkc17sNt_Ow8HMwY0QVuPBmYeGD3sDITk7oGmlVBxBNSJPYLSDRmhWta3Vmolequz1ZvPyMTkTrUto7_LGU17UcKEVFyfS242Uf-THgjGZg1_ClHc0guZ06kqpKrPoxrLBxxiwf3oao-aUvjnFa07xmi39LHm_SZyf_3j-h_7uH_RDjhbDfjXKCEOFpLQyc9eL33I4wFw</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Kim, You-Dong</creator><creator>Kim, In-Ho</creator><creator>Meisel, Charlie</creator><creator>Herradón, Carolina</creator><creator>Rand, Peter W</creator><creator>Yang, Jayoon</creator><creator>Kim, Hyun Sik</creator><creator>Sullivan, Neal P</creator><creator>O’Hayre, Ryan</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8621-678X</orcidid><orcidid>https://orcid.org/0000-0003-0844-5947</orcidid><orcidid>https://orcid.org/0000-0002-5896-6292</orcidid><orcidid>https://orcid.org/0000-0003-3762-3052</orcidid><orcidid>https://orcid.org/000000028621678X</orcidid><orcidid>https://orcid.org/0000000258966292</orcidid><orcidid>https://orcid.org/0000000308445947</orcidid><orcidid>https://orcid.org/0000000337623052</orcidid></search><sort><creationdate>20240701</creationdate><title>Improving tubular protonic ceramic fuel cell performance by compensating Ba evaporation via a Ba-excess optimized proton conducting electrolyte synthesis strategy</title><author>Kim, You-Dong ; Kim, In-Ho ; Meisel, Charlie ; Herradón, Carolina ; Rand, Peter W ; Yang, Jayoon ; Kim, Hyun Sik ; Sullivan, Neal P ; O’Hayre, Ryan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-b1d802215d420db89f1b0844a9960af79778c6c2737741e733a110c66322a3333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Barium</topic><topic>barium evaporation</topic><topic>Ceramics</topic><topic>Chemical properties</topic><topic>Electrochemical analysis</topic><topic>Electrolytic cells</topic><topic>Energy conversion</topic><topic>Evaporation</topic><topic>Fuel cells</topic><topic>High temperature</topic><topic>protonic ceramic electrolyte</topic><topic>protonic ceramic fuel cells</topic><topic>Protons</topic><topic>reducing sintering temperature</topic><topic>tubular protonic ceramic fuel cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, You-Dong</creatorcontrib><creatorcontrib>Kim, In-Ho</creatorcontrib><creatorcontrib>Meisel, Charlie</creatorcontrib><creatorcontrib>Herradón, Carolina</creatorcontrib><creatorcontrib>Rand, Peter W</creatorcontrib><creatorcontrib>Yang, Jayoon</creatorcontrib><creatorcontrib>Kim, Hyun Sik</creatorcontrib><creatorcontrib>Sullivan, Neal P</creatorcontrib><creatorcontrib>O’Hayre, Ryan</creatorcontrib><collection>IOP Publishing</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>JPhys Energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, You-Dong</au><au>Kim, In-Ho</au><au>Meisel, Charlie</au><au>Herradón, Carolina</au><au>Rand, Peter W</au><au>Yang, Jayoon</au><au>Kim, Hyun Sik</au><au>Sullivan, Neal P</au><au>O’Hayre, Ryan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving tubular protonic ceramic fuel cell performance by compensating Ba evaporation via a Ba-excess optimized proton conducting electrolyte synthesis strategy</atitle><jtitle>JPhys Energy</jtitle><stitle>JPhysEnergy</stitle><addtitle>J. Phys. Energy</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>6</volume><issue>3</issue><spage>35004</spage><pages>35004-</pages><issn>2515-7655</issn><eissn>2515-7655</eissn><abstract>Protonic ceramic fuel cells (PCFCs) are emerging as a promising technology for reduced temperature ceramic energy conversion devices. The BaCe
0.4
Zr
0.4
Y
0.1
Yb
0.1
O
3−
δ
(BCZYYb4411) electrolyte is notable for its high proton conductivity. However, the tendency of barium to volatilize in BCZYYb4411 during high-temperature sintering compromises its chemical stability and performance. This study investigates the effects of intentionally incorporating excess barium into BCZYYb4411, formulated as Ba
1+
x
Ce
0.4
Zr
0.4
Y
0.1
Yb
0.1
O
3−
δ
(where
x
= 0, 0.1, 0.2, and 0.3), with the aim of compensating barium evaporation and enhancing the physical and chemical properties. We find that excess barium results in a greater shrinkage rate, facilitating a denser electrolyte structure. This barium-enriched electrolyte demonstrates improved electrochemical performance by effectively counteracting the deleterious effects of barium evaporation. Applying this strategy to tubular PCFCs, we achieved a peak power density of 480 mW∙cm
−2
at 600 °C. This unique approach provides a simple, tunable, and easy-to-implement processing modification to achieve high-performance tubular PCFC.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2515-7655/ad5760</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8621-678X</orcidid><orcidid>https://orcid.org/0000-0003-0844-5947</orcidid><orcidid>https://orcid.org/0000-0002-5896-6292</orcidid><orcidid>https://orcid.org/0000-0003-3762-3052</orcidid><orcidid>https://orcid.org/000000028621678X</orcidid><orcidid>https://orcid.org/0000000258966292</orcidid><orcidid>https://orcid.org/0000000308445947</orcidid><orcidid>https://orcid.org/0000000337623052</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2515-7655 |
ispartof | JPhys Energy, 2024-07, Vol.6 (3), p.35004 |
issn | 2515-7655 2515-7655 |
language | eng |
recordid | cdi_proquest_journals_3071084664 |
source | Publicly Available Content Database |
subjects | Barium barium evaporation Ceramics Chemical properties Electrochemical analysis Electrolytic cells Energy conversion Evaporation Fuel cells High temperature protonic ceramic electrolyte protonic ceramic fuel cells Protons reducing sintering temperature tubular protonic ceramic fuel cells |
title | Improving tubular protonic ceramic fuel cell performance by compensating Ba evaporation via a Ba-excess optimized proton conducting electrolyte synthesis strategy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A34%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20tubular%20protonic%20ceramic%20fuel%20cell%20performance%20by%20compensating%20Ba%20evaporation%20via%20a%20Ba-excess%20optimized%20proton%20conducting%20electrolyte%20synthesis%20strategy&rft.jtitle=JPhys%20Energy&rft.au=Kim,%20You-Dong&rft.date=2024-07-01&rft.volume=6&rft.issue=3&rft.spage=35004&rft.pages=35004-&rft.issn=2515-7655&rft.eissn=2515-7655&rft_id=info:doi/10.1088/2515-7655/ad5760&rft_dat=%3Cproquest_iop_j%3E3071084664%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-b1d802215d420db89f1b0844a9960af79778c6c2737741e733a110c66322a3333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3071084664&rft_id=info:pmid/&rfr_iscdi=true |