Loading…

Improving tubular protonic ceramic fuel cell performance by compensating Ba evaporation via a Ba-excess optimized proton conducting electrolyte synthesis strategy

Protonic ceramic fuel cells (PCFCs) are emerging as a promising technology for reduced temperature ceramic energy conversion devices. The BaCe 0.4 Zr 0.4 Y 0.1 Yb 0.1 O 3− δ (BCZYYb4411) electrolyte is notable for its high proton conductivity. However, the tendency of barium to volatilize in BCZYYb4...

Full description

Saved in:
Bibliographic Details
Published in:JPhys Energy 2024-07, Vol.6 (3), p.35004
Main Authors: Kim, You-Dong, Kim, In-Ho, Meisel, Charlie, Herradón, Carolina, Rand, Peter W, Yang, Jayoon, Kim, Hyun Sik, Sullivan, Neal P, O’Hayre, Ryan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c362t-b1d802215d420db89f1b0844a9960af79778c6c2737741e733a110c66322a3333
container_end_page
container_issue 3
container_start_page 35004
container_title JPhys Energy
container_volume 6
creator Kim, You-Dong
Kim, In-Ho
Meisel, Charlie
Herradón, Carolina
Rand, Peter W
Yang, Jayoon
Kim, Hyun Sik
Sullivan, Neal P
O’Hayre, Ryan
description Protonic ceramic fuel cells (PCFCs) are emerging as a promising technology for reduced temperature ceramic energy conversion devices. The BaCe 0.4 Zr 0.4 Y 0.1 Yb 0.1 O 3− δ (BCZYYb4411) electrolyte is notable for its high proton conductivity. However, the tendency of barium to volatilize in BCZYYb4411 during high-temperature sintering compromises its chemical stability and performance. This study investigates the effects of intentionally incorporating excess barium into BCZYYb4411, formulated as Ba 1+ x Ce 0.4 Zr 0.4 Y 0.1 Yb 0.1 O 3− δ (where x = 0, 0.1, 0.2, and 0.3), with the aim of compensating barium evaporation and enhancing the physical and chemical properties. We find that excess barium results in a greater shrinkage rate, facilitating a denser electrolyte structure. This barium-enriched electrolyte demonstrates improved electrochemical performance by effectively counteracting the deleterious effects of barium evaporation. Applying this strategy to tubular PCFCs, we achieved a peak power density of 480 mW∙cm −2 at 600 °C. This unique approach provides a simple, tunable, and easy-to-implement processing modification to achieve high-performance tubular PCFC.
doi_str_mv 10.1088/2515-7655/ad5760
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_3071084664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b5562ea69308410da93714bbc7713f56</doaj_id><sourcerecordid>3071084664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-b1d802215d420db89f1b0844a9960af79778c6c2737741e733a110c66322a3333</originalsourceid><addsrcrecordid>eNp9UU1v1TAQjBBIVKV3jhYcIdQfsZ0coYL2SZW4wNnaOJtXPyVxsJ0n0p_DL8WvqQoHhC_rWc3Mej1F8ZrRD4zW9SWXTJZaSXkJndSKPivOnlrP_7q_LC5iPFBKeS2VZvSs-LUb5-CPbtqTtLTLAIFknPzkLLEYYMy1X3DIYBjIjKH3YYTJImlXYv044xQhneSfgOARZh8y9BM5OiCQmyX-tBgj8XNyo7vH7tE_i6dusQ9SHNCm4Ic1IYnrlO4wukhiyla4X18VL3oYIl481vPi-5fP365uytuv17urj7elFYqnsmVdTTlnsqs47dq66VlL66qCplEUet1oXVtluRZaVwy1EMAYtUoJzkHkc17sNt_Ow8HMwY0QVuPBmYeGD3sDITk7oGmlVBxBNSJPYLSDRmhWta3Vmolequz1ZvPyMTkTrUto7_LGU17UcKEVFyfS242Uf-THgjGZg1_ClHc0guZ06kqpKrPoxrLBxxiwf3oao-aUvjnFa07xmi39LHm_SZyf_3j-h_7uH_RDjhbDfjXKCEOFpLQyc9eL33I4wFw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3071084664</pqid></control><display><type>article</type><title>Improving tubular protonic ceramic fuel cell performance by compensating Ba evaporation via a Ba-excess optimized proton conducting electrolyte synthesis strategy</title><source>Publicly Available Content Database</source><creator>Kim, You-Dong ; Kim, In-Ho ; Meisel, Charlie ; Herradón, Carolina ; Rand, Peter W ; Yang, Jayoon ; Kim, Hyun Sik ; Sullivan, Neal P ; O’Hayre, Ryan</creator><creatorcontrib>Kim, You-Dong ; Kim, In-Ho ; Meisel, Charlie ; Herradón, Carolina ; Rand, Peter W ; Yang, Jayoon ; Kim, Hyun Sik ; Sullivan, Neal P ; O’Hayre, Ryan</creatorcontrib><description>Protonic ceramic fuel cells (PCFCs) are emerging as a promising technology for reduced temperature ceramic energy conversion devices. The BaCe 0.4 Zr 0.4 Y 0.1 Yb 0.1 O 3− δ (BCZYYb4411) electrolyte is notable for its high proton conductivity. However, the tendency of barium to volatilize in BCZYYb4411 during high-temperature sintering compromises its chemical stability and performance. This study investigates the effects of intentionally incorporating excess barium into BCZYYb4411, formulated as Ba 1+ x Ce 0.4 Zr 0.4 Y 0.1 Yb 0.1 O 3− δ (where x = 0, 0.1, 0.2, and 0.3), with the aim of compensating barium evaporation and enhancing the physical and chemical properties. We find that excess barium results in a greater shrinkage rate, facilitating a denser electrolyte structure. This barium-enriched electrolyte demonstrates improved electrochemical performance by effectively counteracting the deleterious effects of barium evaporation. Applying this strategy to tubular PCFCs, we achieved a peak power density of 480 mW∙cm −2 at 600 °C. This unique approach provides a simple, tunable, and easy-to-implement processing modification to achieve high-performance tubular PCFC.</description><identifier>ISSN: 2515-7655</identifier><identifier>EISSN: 2515-7655</identifier><identifier>DOI: 10.1088/2515-7655/ad5760</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Barium ; barium evaporation ; Ceramics ; Chemical properties ; Electrochemical analysis ; Electrolytic cells ; Energy conversion ; Evaporation ; Fuel cells ; High temperature ; protonic ceramic electrolyte ; protonic ceramic fuel cells ; Protons ; reducing sintering temperature ; tubular protonic ceramic fuel cells</subject><ispartof>JPhys Energy, 2024-07, Vol.6 (3), p.35004</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><rights>2024 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c362t-b1d802215d420db89f1b0844a9960af79778c6c2737741e733a110c66322a3333</cites><orcidid>0000-0002-8621-678X ; 0000-0003-0844-5947 ; 0000-0002-5896-6292 ; 0000-0003-3762-3052 ; 000000028621678X ; 0000000258966292 ; 0000000308445947 ; 0000000337623052</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3071084664?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,25735,27906,27907,36994,44572</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2376236$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, You-Dong</creatorcontrib><creatorcontrib>Kim, In-Ho</creatorcontrib><creatorcontrib>Meisel, Charlie</creatorcontrib><creatorcontrib>Herradón, Carolina</creatorcontrib><creatorcontrib>Rand, Peter W</creatorcontrib><creatorcontrib>Yang, Jayoon</creatorcontrib><creatorcontrib>Kim, Hyun Sik</creatorcontrib><creatorcontrib>Sullivan, Neal P</creatorcontrib><creatorcontrib>O’Hayre, Ryan</creatorcontrib><title>Improving tubular protonic ceramic fuel cell performance by compensating Ba evaporation via a Ba-excess optimized proton conducting electrolyte synthesis strategy</title><title>JPhys Energy</title><addtitle>JPhysEnergy</addtitle><addtitle>J. Phys. Energy</addtitle><description>Protonic ceramic fuel cells (PCFCs) are emerging as a promising technology for reduced temperature ceramic energy conversion devices. The BaCe 0.4 Zr 0.4 Y 0.1 Yb 0.1 O 3− δ (BCZYYb4411) electrolyte is notable for its high proton conductivity. However, the tendency of barium to volatilize in BCZYYb4411 during high-temperature sintering compromises its chemical stability and performance. This study investigates the effects of intentionally incorporating excess barium into BCZYYb4411, formulated as Ba 1+ x Ce 0.4 Zr 0.4 Y 0.1 Yb 0.1 O 3− δ (where x = 0, 0.1, 0.2, and 0.3), with the aim of compensating barium evaporation and enhancing the physical and chemical properties. We find that excess barium results in a greater shrinkage rate, facilitating a denser electrolyte structure. This barium-enriched electrolyte demonstrates improved electrochemical performance by effectively counteracting the deleterious effects of barium evaporation. Applying this strategy to tubular PCFCs, we achieved a peak power density of 480 mW∙cm −2 at 600 °C. This unique approach provides a simple, tunable, and easy-to-implement processing modification to achieve high-performance tubular PCFC.</description><subject>Barium</subject><subject>barium evaporation</subject><subject>Ceramics</subject><subject>Chemical properties</subject><subject>Electrochemical analysis</subject><subject>Electrolytic cells</subject><subject>Energy conversion</subject><subject>Evaporation</subject><subject>Fuel cells</subject><subject>High temperature</subject><subject>protonic ceramic electrolyte</subject><subject>protonic ceramic fuel cells</subject><subject>Protons</subject><subject>reducing sintering temperature</subject><subject>tubular protonic ceramic fuel cells</subject><issn>2515-7655</issn><issn>2515-7655</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UU1v1TAQjBBIVKV3jhYcIdQfsZ0coYL2SZW4wNnaOJtXPyVxsJ0n0p_DL8WvqQoHhC_rWc3Mej1F8ZrRD4zW9SWXTJZaSXkJndSKPivOnlrP_7q_LC5iPFBKeS2VZvSs-LUb5-CPbtqTtLTLAIFknPzkLLEYYMy1X3DIYBjIjKH3YYTJImlXYv044xQhneSfgOARZh8y9BM5OiCQmyX-tBgj8XNyo7vH7tE_i6dusQ9SHNCm4Ic1IYnrlO4wukhiyla4X18VL3oYIl481vPi-5fP365uytuv17urj7elFYqnsmVdTTlnsqs47dq66VlL66qCplEUet1oXVtluRZaVwy1EMAYtUoJzkHkc17sNt_Ow8HMwY0QVuPBmYeGD3sDITk7oGmlVBxBNSJPYLSDRmhWta3Vmolequz1ZvPyMTkTrUto7_LGU17UcKEVFyfS242Uf-THgjGZg1_ClHc0guZ06kqpKrPoxrLBxxiwf3oao-aUvjnFa07xmi39LHm_SZyf_3j-h_7uH_RDjhbDfjXKCEOFpLQyc9eL33I4wFw</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Kim, You-Dong</creator><creator>Kim, In-Ho</creator><creator>Meisel, Charlie</creator><creator>Herradón, Carolina</creator><creator>Rand, Peter W</creator><creator>Yang, Jayoon</creator><creator>Kim, Hyun Sik</creator><creator>Sullivan, Neal P</creator><creator>O’Hayre, Ryan</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8621-678X</orcidid><orcidid>https://orcid.org/0000-0003-0844-5947</orcidid><orcidid>https://orcid.org/0000-0002-5896-6292</orcidid><orcidid>https://orcid.org/0000-0003-3762-3052</orcidid><orcidid>https://orcid.org/000000028621678X</orcidid><orcidid>https://orcid.org/0000000258966292</orcidid><orcidid>https://orcid.org/0000000308445947</orcidid><orcidid>https://orcid.org/0000000337623052</orcidid></search><sort><creationdate>20240701</creationdate><title>Improving tubular protonic ceramic fuel cell performance by compensating Ba evaporation via a Ba-excess optimized proton conducting electrolyte synthesis strategy</title><author>Kim, You-Dong ; Kim, In-Ho ; Meisel, Charlie ; Herradón, Carolina ; Rand, Peter W ; Yang, Jayoon ; Kim, Hyun Sik ; Sullivan, Neal P ; O’Hayre, Ryan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-b1d802215d420db89f1b0844a9960af79778c6c2737741e733a110c66322a3333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Barium</topic><topic>barium evaporation</topic><topic>Ceramics</topic><topic>Chemical properties</topic><topic>Electrochemical analysis</topic><topic>Electrolytic cells</topic><topic>Energy conversion</topic><topic>Evaporation</topic><topic>Fuel cells</topic><topic>High temperature</topic><topic>protonic ceramic electrolyte</topic><topic>protonic ceramic fuel cells</topic><topic>Protons</topic><topic>reducing sintering temperature</topic><topic>tubular protonic ceramic fuel cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, You-Dong</creatorcontrib><creatorcontrib>Kim, In-Ho</creatorcontrib><creatorcontrib>Meisel, Charlie</creatorcontrib><creatorcontrib>Herradón, Carolina</creatorcontrib><creatorcontrib>Rand, Peter W</creatorcontrib><creatorcontrib>Yang, Jayoon</creatorcontrib><creatorcontrib>Kim, Hyun Sik</creatorcontrib><creatorcontrib>Sullivan, Neal P</creatorcontrib><creatorcontrib>O’Hayre, Ryan</creatorcontrib><collection>IOP Publishing</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>JPhys Energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, You-Dong</au><au>Kim, In-Ho</au><au>Meisel, Charlie</au><au>Herradón, Carolina</au><au>Rand, Peter W</au><au>Yang, Jayoon</au><au>Kim, Hyun Sik</au><au>Sullivan, Neal P</au><au>O’Hayre, Ryan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving tubular protonic ceramic fuel cell performance by compensating Ba evaporation via a Ba-excess optimized proton conducting electrolyte synthesis strategy</atitle><jtitle>JPhys Energy</jtitle><stitle>JPhysEnergy</stitle><addtitle>J. Phys. Energy</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>6</volume><issue>3</issue><spage>35004</spage><pages>35004-</pages><issn>2515-7655</issn><eissn>2515-7655</eissn><abstract>Protonic ceramic fuel cells (PCFCs) are emerging as a promising technology for reduced temperature ceramic energy conversion devices. The BaCe 0.4 Zr 0.4 Y 0.1 Yb 0.1 O 3− δ (BCZYYb4411) electrolyte is notable for its high proton conductivity. However, the tendency of barium to volatilize in BCZYYb4411 during high-temperature sintering compromises its chemical stability and performance. This study investigates the effects of intentionally incorporating excess barium into BCZYYb4411, formulated as Ba 1+ x Ce 0.4 Zr 0.4 Y 0.1 Yb 0.1 O 3− δ (where x = 0, 0.1, 0.2, and 0.3), with the aim of compensating barium evaporation and enhancing the physical and chemical properties. We find that excess barium results in a greater shrinkage rate, facilitating a denser electrolyte structure. This barium-enriched electrolyte demonstrates improved electrochemical performance by effectively counteracting the deleterious effects of barium evaporation. Applying this strategy to tubular PCFCs, we achieved a peak power density of 480 mW∙cm −2 at 600 °C. This unique approach provides a simple, tunable, and easy-to-implement processing modification to achieve high-performance tubular PCFC.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2515-7655/ad5760</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8621-678X</orcidid><orcidid>https://orcid.org/0000-0003-0844-5947</orcidid><orcidid>https://orcid.org/0000-0002-5896-6292</orcidid><orcidid>https://orcid.org/0000-0003-3762-3052</orcidid><orcidid>https://orcid.org/000000028621678X</orcidid><orcidid>https://orcid.org/0000000258966292</orcidid><orcidid>https://orcid.org/0000000308445947</orcidid><orcidid>https://orcid.org/0000000337623052</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2515-7655
ispartof JPhys Energy, 2024-07, Vol.6 (3), p.35004
issn 2515-7655
2515-7655
language eng
recordid cdi_proquest_journals_3071084664
source Publicly Available Content Database
subjects Barium
barium evaporation
Ceramics
Chemical properties
Electrochemical analysis
Electrolytic cells
Energy conversion
Evaporation
Fuel cells
High temperature
protonic ceramic electrolyte
protonic ceramic fuel cells
Protons
reducing sintering temperature
tubular protonic ceramic fuel cells
title Improving tubular protonic ceramic fuel cell performance by compensating Ba evaporation via a Ba-excess optimized proton conducting electrolyte synthesis strategy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A34%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20tubular%20protonic%20ceramic%20fuel%20cell%20performance%20by%20compensating%20Ba%20evaporation%20via%20a%20Ba-excess%20optimized%20proton%20conducting%20electrolyte%20synthesis%20strategy&rft.jtitle=JPhys%20Energy&rft.au=Kim,%20You-Dong&rft.date=2024-07-01&rft.volume=6&rft.issue=3&rft.spage=35004&rft.pages=35004-&rft.issn=2515-7655&rft.eissn=2515-7655&rft_id=info:doi/10.1088/2515-7655/ad5760&rft_dat=%3Cproquest_iop_j%3E3071084664%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-b1d802215d420db89f1b0844a9960af79778c6c2737741e733a110c66322a3333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3071084664&rft_id=info:pmid/&rfr_iscdi=true