Loading…

Spontaneous α‐C−H Carboxylation of Ketones by Gaseous CO2 at the Air‐water Interface of Aqueous Microdroplets

We present a catalyst‐free route for the reduction of carbon dioxide integrated with the formation of a carbon‐carbon bond at the air/water interface of negatively charged aqueous microdroplets, at ambient temperature. The reactions proceed through carbanion generation at the α‐carbon of a ketone fo...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie 2024-07, Vol.136 (27), p.n/a
Main Authors: Basuri, Pallab, Mukhopadhyay, Sinchan, Reddy, K. S. S. V. Prasad, Unni, Keerthana, Spoorthi, B. K., Shantha Kumar, Jenifer, Yamijala, Sharma S. R. K. C., Pradeep, Thalappil
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 27
container_start_page
container_title Angewandte Chemie
container_volume 136
creator Basuri, Pallab
Mukhopadhyay, Sinchan
Reddy, K. S. S. V. Prasad
Unni, Keerthana
Spoorthi, B. K.
Shantha Kumar, Jenifer
Yamijala, Sharma S. R. K. C.
Pradeep, Thalappil
description We present a catalyst‐free route for the reduction of carbon dioxide integrated with the formation of a carbon‐carbon bond at the air/water interface of negatively charged aqueous microdroplets, at ambient temperature. The reactions proceed through carbanion generation at the α‐carbon of a ketone followed by nucleophilic addition to CO2. Online mass spectrometry reveals that the product is an α‐ketoacid. Several factors, such as the concentration of the reagents, pressure of CO2 gas, and distance traveled by the droplets, control the kinetics of the reaction. Theoretical calculations suggest that water in the microdroplets facilitates this unusual chemistry. Furthermore, such a microdroplet strategy has been extended to seven different ketones. This work demonstrates a green pathway for the reduction of CO2 to useful carboxylated organic products. Charged aqueous microdroplets facilitate carboxylation at α‐C−H position of ketones by gaseous CO2 at the air–water Interface.
doi_str_mv 10.1002/ange.202403229
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3071417032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3071417032</sourcerecordid><originalsourceid>FETCH-LOGICAL-p789-e05a18465c7c09f4fddb7c76494046b9a02182869575f2f65c271c2ae82dfe33</originalsourceid><addsrcrecordid>eNo9kLFOwzAQhi0EEqWwMltiTrEdJ47HKCptRaFD2S0nsSFViIPtqmRjZES8CS_CQ_RJSFvU5U4nff_d6QPgGqMRRojcyuZZjQgiFIWE8BMwwBHBQcgidgoGCFEaJITyc3Dh3AohFBPGB8AvW9N42SizdvD3Z_vxlW0_v6cwkzY3710tfWUaaDS8V940ysG8gxPp9ni2IFB66F8UTCvbRzfSKwtnTV-1LNQulr6t9-xDVVhTWtPWyrtLcKZl7dTVfx-C5d34KZsG88VklqXzoGUJDxSKJE5oHBWsQFxTXZY5K1hMOUU0zrlEBCckiXnEIk10zxGGCyJVQkqtwnAIbg5bW2v6L5wXK7O2TX9QhIhhilkvqqf4gdpUtepEa6tXaTuBkdhJFTup4ihVpI-T8XEK_wBP1XEV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3071417032</pqid></control><display><type>article</type><title>Spontaneous α‐C−H Carboxylation of Ketones by Gaseous CO2 at the Air‐water Interface of Aqueous Microdroplets</title><source>Wiley</source><creator>Basuri, Pallab ; Mukhopadhyay, Sinchan ; Reddy, K. S. S. V. Prasad ; Unni, Keerthana ; Spoorthi, B. K. ; Shantha Kumar, Jenifer ; Yamijala, Sharma S. R. K. C. ; Pradeep, Thalappil</creator><creatorcontrib>Basuri, Pallab ; Mukhopadhyay, Sinchan ; Reddy, K. S. S. V. Prasad ; Unni, Keerthana ; Spoorthi, B. K. ; Shantha Kumar, Jenifer ; Yamijala, Sharma S. R. K. C. ; Pradeep, Thalappil</creatorcontrib><description>We present a catalyst‐free route for the reduction of carbon dioxide integrated with the formation of a carbon‐carbon bond at the air/water interface of negatively charged aqueous microdroplets, at ambient temperature. The reactions proceed through carbanion generation at the α‐carbon of a ketone followed by nucleophilic addition to CO2. Online mass spectrometry reveals that the product is an α‐ketoacid. Several factors, such as the concentration of the reagents, pressure of CO2 gas, and distance traveled by the droplets, control the kinetics of the reaction. Theoretical calculations suggest that water in the microdroplets facilitates this unusual chemistry. Furthermore, such a microdroplet strategy has been extended to seven different ketones. This work demonstrates a green pathway for the reduction of CO2 to useful carboxylated organic products. Charged aqueous microdroplets facilitate carboxylation at α‐C−H position of ketones by gaseous CO2 at the air–water Interface.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202403229</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Air temperature ; Air-water interface ; Ambient temperature ; carbanion ; Carbon dioxide ; Carbon dioxide reduction ; Carboxylation ; Catalysts ; Ketones ; Mass spectrometry ; Mass spectroscopy ; microdroplet chemistry ; Reagents</subject><ispartof>Angewandte Chemie, 2024-07, Vol.136 (27), p.n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3174-534X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Basuri, Pallab</creatorcontrib><creatorcontrib>Mukhopadhyay, Sinchan</creatorcontrib><creatorcontrib>Reddy, K. S. S. V. Prasad</creatorcontrib><creatorcontrib>Unni, Keerthana</creatorcontrib><creatorcontrib>Spoorthi, B. K.</creatorcontrib><creatorcontrib>Shantha Kumar, Jenifer</creatorcontrib><creatorcontrib>Yamijala, Sharma S. R. K. C.</creatorcontrib><creatorcontrib>Pradeep, Thalappil</creatorcontrib><title>Spontaneous α‐C−H Carboxylation of Ketones by Gaseous CO2 at the Air‐water Interface of Aqueous Microdroplets</title><title>Angewandte Chemie</title><description>We present a catalyst‐free route for the reduction of carbon dioxide integrated with the formation of a carbon‐carbon bond at the air/water interface of negatively charged aqueous microdroplets, at ambient temperature. The reactions proceed through carbanion generation at the α‐carbon of a ketone followed by nucleophilic addition to CO2. Online mass spectrometry reveals that the product is an α‐ketoacid. Several factors, such as the concentration of the reagents, pressure of CO2 gas, and distance traveled by the droplets, control the kinetics of the reaction. Theoretical calculations suggest that water in the microdroplets facilitates this unusual chemistry. Furthermore, such a microdroplet strategy has been extended to seven different ketones. This work demonstrates a green pathway for the reduction of CO2 to useful carboxylated organic products. Charged aqueous microdroplets facilitate carboxylation at α‐C−H position of ketones by gaseous CO2 at the air–water Interface.</description><subject>Air temperature</subject><subject>Air-water interface</subject><subject>Ambient temperature</subject><subject>carbanion</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide reduction</subject><subject>Carboxylation</subject><subject>Catalysts</subject><subject>Ketones</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>microdroplet chemistry</subject><subject>Reagents</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kLFOwzAQhi0EEqWwMltiTrEdJ47HKCptRaFD2S0nsSFViIPtqmRjZES8CS_CQ_RJSFvU5U4nff_d6QPgGqMRRojcyuZZjQgiFIWE8BMwwBHBQcgidgoGCFEaJITyc3Dh3AohFBPGB8AvW9N42SizdvD3Z_vxlW0_v6cwkzY3710tfWUaaDS8V940ysG8gxPp9ni2IFB66F8UTCvbRzfSKwtnTV-1LNQulr6t9-xDVVhTWtPWyrtLcKZl7dTVfx-C5d34KZsG88VklqXzoGUJDxSKJE5oHBWsQFxTXZY5K1hMOUU0zrlEBCckiXnEIk10zxGGCyJVQkqtwnAIbg5bW2v6L5wXK7O2TX9QhIhhilkvqqf4gdpUtepEa6tXaTuBkdhJFTup4ihVpI-T8XEK_wBP1XEV</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Basuri, Pallab</creator><creator>Mukhopadhyay, Sinchan</creator><creator>Reddy, K. S. S. V. Prasad</creator><creator>Unni, Keerthana</creator><creator>Spoorthi, B. K.</creator><creator>Shantha Kumar, Jenifer</creator><creator>Yamijala, Sharma S. R. K. C.</creator><creator>Pradeep, Thalappil</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3174-534X</orcidid></search><sort><creationdate>20240701</creationdate><title>Spontaneous α‐C−H Carboxylation of Ketones by Gaseous CO2 at the Air‐water Interface of Aqueous Microdroplets</title><author>Basuri, Pallab ; Mukhopadhyay, Sinchan ; Reddy, K. S. S. V. Prasad ; Unni, Keerthana ; Spoorthi, B. K. ; Shantha Kumar, Jenifer ; Yamijala, Sharma S. R. K. C. ; Pradeep, Thalappil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p789-e05a18465c7c09f4fddb7c76494046b9a02182869575f2f65c271c2ae82dfe33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air temperature</topic><topic>Air-water interface</topic><topic>Ambient temperature</topic><topic>carbanion</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide reduction</topic><topic>Carboxylation</topic><topic>Catalysts</topic><topic>Ketones</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>microdroplet chemistry</topic><topic>Reagents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basuri, Pallab</creatorcontrib><creatorcontrib>Mukhopadhyay, Sinchan</creatorcontrib><creatorcontrib>Reddy, K. S. S. V. Prasad</creatorcontrib><creatorcontrib>Unni, Keerthana</creatorcontrib><creatorcontrib>Spoorthi, B. K.</creatorcontrib><creatorcontrib>Shantha Kumar, Jenifer</creatorcontrib><creatorcontrib>Yamijala, Sharma S. R. K. C.</creatorcontrib><creatorcontrib>Pradeep, Thalappil</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basuri, Pallab</au><au>Mukhopadhyay, Sinchan</au><au>Reddy, K. S. S. V. Prasad</au><au>Unni, Keerthana</au><au>Spoorthi, B. K.</au><au>Shantha Kumar, Jenifer</au><au>Yamijala, Sharma S. R. K. C.</au><au>Pradeep, Thalappil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spontaneous α‐C−H Carboxylation of Ketones by Gaseous CO2 at the Air‐water Interface of Aqueous Microdroplets</atitle><jtitle>Angewandte Chemie</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>136</volume><issue>27</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>We present a catalyst‐free route for the reduction of carbon dioxide integrated with the formation of a carbon‐carbon bond at the air/water interface of negatively charged aqueous microdroplets, at ambient temperature. The reactions proceed through carbanion generation at the α‐carbon of a ketone followed by nucleophilic addition to CO2. Online mass spectrometry reveals that the product is an α‐ketoacid. Several factors, such as the concentration of the reagents, pressure of CO2 gas, and distance traveled by the droplets, control the kinetics of the reaction. Theoretical calculations suggest that water in the microdroplets facilitates this unusual chemistry. Furthermore, such a microdroplet strategy has been extended to seven different ketones. This work demonstrates a green pathway for the reduction of CO2 to useful carboxylated organic products. Charged aqueous microdroplets facilitate carboxylation at α‐C−H position of ketones by gaseous CO2 at the air–water Interface.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202403229</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3174-534X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2024-07, Vol.136 (27), p.n/a
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_3071417032
source Wiley
subjects Air temperature
Air-water interface
Ambient temperature
carbanion
Carbon dioxide
Carbon dioxide reduction
Carboxylation
Catalysts
Ketones
Mass spectrometry
Mass spectroscopy
microdroplet chemistry
Reagents
title Spontaneous α‐C−H Carboxylation of Ketones by Gaseous CO2 at the Air‐water Interface of Aqueous Microdroplets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A55%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spontaneous%20%CE%B1%E2%80%90C%E2%88%92H%20Carboxylation%20of%20Ketones%20by%20Gaseous%20CO2%20at%20the%20Air%E2%80%90water%20Interface%20of%20Aqueous%20Microdroplets&rft.jtitle=Angewandte%20Chemie&rft.au=Basuri,%20Pallab&rft.date=2024-07-01&rft.volume=136&rft.issue=27&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202403229&rft_dat=%3Cproquest_wiley%3E3071417032%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p789-e05a18465c7c09f4fddb7c76494046b9a02182869575f2f65c271c2ae82dfe33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3071417032&rft_id=info:pmid/&rfr_iscdi=true