Loading…
On complete generators of certain Lie algebras on Danielewski surfaces
We study the Lie algebra of polynomial vector fields on a smooth Danielewski surface of the form \(x y = p(z)\) with \(x,y,z \in \mathbb{C}\). We provide explicitly given generators to show that: 1. The Lie algebra of polynomial vector fields is generated by \(6\) complete vector fields. 2. The Lie...
Saved in:
Published in: | arXiv.org 2024-07 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Andrist, Rafael B |
description | We study the Lie algebra of polynomial vector fields on a smooth Danielewski surface of the form \(x y = p(z)\) with \(x,y,z \in \mathbb{C}\). We provide explicitly given generators to show that: 1. The Lie algebra of polynomial vector fields is generated by \(6\) complete vector fields. 2. The Lie algebra of volume-preserving polynomial vector fields is generated by finitely many vector fields, whose number depends on the degree of the defining polynomial. 3. There exists a Lie sub-algebra generated by \(4\) LNDs whose flows generate a group that acts infinitely transitively on the Danielewski surface. The latter result is also generalized to higher dimensions where \(z \in \mathbb{C}^N\). |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3071629429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3071629429</sourcerecordid><originalsourceid>FETCH-proquest_journals_30716294293</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3eOC6kCb92LVaXAhu3JcYXktqTGpeite3Cw_gamBmViwRUubZoRBiw1KikXMuqlqUpUxYe3Og_WuyGBEGdBhU9IHA96AxRGUcXA2CsgM-glq8g5NyBi1-6GmA5tArjbRj615ZwvTHLdu35_vxkk3Bv2ek2I1-Dm5JneR1XommEI387_oCuvA7UA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3071629429</pqid></control><display><type>article</type><title>On complete generators of certain Lie algebras on Danielewski surfaces</title><source>Publicly Available Content (ProQuest)</source><creator>Andrist, Rafael B</creator><creatorcontrib>Andrist, Rafael B</creatorcontrib><description>We study the Lie algebra of polynomial vector fields on a smooth Danielewski surface of the form \(x y = p(z)\) with \(x,y,z \in \mathbb{C}\). We provide explicitly given generators to show that: 1. The Lie algebra of polynomial vector fields is generated by \(6\) complete vector fields. 2. The Lie algebra of volume-preserving polynomial vector fields is generated by finitely many vector fields, whose number depends on the degree of the defining polynomial. 3. There exists a Lie sub-algebra generated by \(4\) LNDs whose flows generate a group that acts infinitely transitively on the Danielewski surface. The latter result is also generalized to higher dimensions where \(z \in \mathbb{C}^N\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Fields (mathematics) ; Lie groups ; Polynomials ; Vectors (mathematics)</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3071629429?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25744,37003,44581</link.rule.ids></links><search><creatorcontrib>Andrist, Rafael B</creatorcontrib><title>On complete generators of certain Lie algebras on Danielewski surfaces</title><title>arXiv.org</title><description>We study the Lie algebra of polynomial vector fields on a smooth Danielewski surface of the form \(x y = p(z)\) with \(x,y,z \in \mathbb{C}\). We provide explicitly given generators to show that: 1. The Lie algebra of polynomial vector fields is generated by \(6\) complete vector fields. 2. The Lie algebra of volume-preserving polynomial vector fields is generated by finitely many vector fields, whose number depends on the degree of the defining polynomial. 3. There exists a Lie sub-algebra generated by \(4\) LNDs whose flows generate a group that acts infinitely transitively on the Danielewski surface. The latter result is also generalized to higher dimensions where \(z \in \mathbb{C}^N\).</description><subject>Algebra</subject><subject>Fields (mathematics)</subject><subject>Lie groups</subject><subject>Polynomials</subject><subject>Vectors (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNiksKwjAUAIMgWLR3eOC6kCb92LVaXAhu3JcYXktqTGpeite3Cw_gamBmViwRUubZoRBiw1KikXMuqlqUpUxYe3Og_WuyGBEGdBhU9IHA96AxRGUcXA2CsgM-glq8g5NyBi1-6GmA5tArjbRj615ZwvTHLdu35_vxkk3Bv2ek2I1-Dm5JneR1XommEI387_oCuvA7UA</recordid><startdate>20240711</startdate><enddate>20240711</enddate><creator>Andrist, Rafael B</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240711</creationdate><title>On complete generators of certain Lie algebras on Danielewski surfaces</title><author>Andrist, Rafael B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30716294293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Fields (mathematics)</topic><topic>Lie groups</topic><topic>Polynomials</topic><topic>Vectors (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Andrist, Rafael B</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andrist, Rafael B</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On complete generators of certain Lie algebras on Danielewski surfaces</atitle><jtitle>arXiv.org</jtitle><date>2024-07-11</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We study the Lie algebra of polynomial vector fields on a smooth Danielewski surface of the form \(x y = p(z)\) with \(x,y,z \in \mathbb{C}\). We provide explicitly given generators to show that: 1. The Lie algebra of polynomial vector fields is generated by \(6\) complete vector fields. 2. The Lie algebra of volume-preserving polynomial vector fields is generated by finitely many vector fields, whose number depends on the degree of the defining polynomial. 3. There exists a Lie sub-algebra generated by \(4\) LNDs whose flows generate a group that acts infinitely transitively on the Danielewski surface. The latter result is also generalized to higher dimensions where \(z \in \mathbb{C}^N\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3071629429 |
source | Publicly Available Content (ProQuest) |
subjects | Algebra Fields (mathematics) Lie groups Polynomials Vectors (mathematics) |
title | On complete generators of certain Lie algebras on Danielewski surfaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A12%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20complete%20generators%20of%20certain%20Lie%20algebras%20on%20Danielewski%20surfaces&rft.jtitle=arXiv.org&rft.au=Andrist,%20Rafael%20B&rft.date=2024-07-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3071629429%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30716294293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3071629429&rft_id=info:pmid/&rfr_iscdi=true |