Loading…

Three robust temperature-drift compensation strategies for a MEMS gravimeter

Gravimeters fabricated with MEMS suffer from temperature-dependent drifts in their long-term stability. We analyze the thermal contributions to the signal, and we propose three mechanisms to mitigate their effects. The first one uses materials that fulfill the condition \(\alpha_E=-2 \alpha\), where...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-06
Main Authors: Valenzuela, Victor M, Teran, Daniel, Sandoval, Alejandro, Gomez, Eduardo, Franco-Villafañe, John A, Alcantar-Peña, Jesus J, Ponce-Hernandez, Juan
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Valenzuela, Victor M
Teran, Daniel
Sandoval, Alejandro
Gomez, Eduardo
Franco-Villafañe, John A
Alcantar-Peña, Jesus J
Ponce-Hernandez, Juan
description Gravimeters fabricated with MEMS suffer from temperature-dependent drifts in their long-term stability. We analyze the thermal contributions to the signal, and we propose three mechanisms to mitigate their effects. The first one uses materials that fulfill the condition \(\alpha_E=-2 \alpha\), where the thermal expansion is canceled by the temperature variation of the Young's modulus. The second one uses the thermal expansion to introduce a compression that compensates the variation in the force of the spring. In the third one, the expansion compensates the displacement of the proof mass in the sensor, rather than the force. The three mechanisms are robust since they only depend on the temperature of the sensor itself.
doi_str_mv 10.48550/arxiv.2406.14691
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3071629707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3071629707</sourcerecordid><originalsourceid>FETCH-LOGICAL-a527-c3e54691422c60322cda2dd80432478558758a13cb68b02842204c6d58b368ea3</originalsourceid><addsrcrecordid>eNotj0trwzAQhEWh0JDmB_QmyNnu6q0cS0gf4NBDfQ-yvU4cGiuV5NCfX4XmMgM7MPsNIU8MSmmVgmcXfodLySXokkm9YndkxoVghZWcP5BFjEcA4NpwpcSMVPUhINLgmykmmvB0xuDSFLDowtAn2vp8GaNLgx9pTDnD_YCR9j5QR7eb7RfdB3cZTpgwPJL73n1HXNx8TurXTb1-L6rPt4_1S1U4xU3RClRXsMzTahBZO8e7zoIUXJq8wRplHRNto20D_MoNstWdso3QFp2Yk-V_7Tn4nwlj2h39FMb8cSfAMM1XBoz4A6Q7TjY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3071629707</pqid></control><display><type>article</type><title>Three robust temperature-drift compensation strategies for a MEMS gravimeter</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Valenzuela, Victor M ; Teran, Daniel ; Sandoval, Alejandro ; Gomez, Eduardo ; Franco-Villafañe, John A ; Alcantar-Peña, Jesus J ; Ponce-Hernandez, Juan</creator><creatorcontrib>Valenzuela, Victor M ; Teran, Daniel ; Sandoval, Alejandro ; Gomez, Eduardo ; Franco-Villafañe, John A ; Alcantar-Peña, Jesus J ; Ponce-Hernandez, Juan</creatorcontrib><description>Gravimeters fabricated with MEMS suffer from temperature-dependent drifts in their long-term stability. We analyze the thermal contributions to the signal, and we propose three mechanisms to mitigate their effects. The first one uses materials that fulfill the condition \(\alpha_E=-2 \alpha\), where the thermal expansion is canceled by the temperature variation of the Young's modulus. The second one uses the thermal expansion to introduce a compression that compensates the variation in the force of the spring. In the third one, the expansion compensates the displacement of the proof mass in the sensor, rather than the force. The three mechanisms are robust since they only depend on the temperature of the sensor itself.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2406.14691</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Gravimeters ; Modulus of elasticity ; Robustness ; Seasonal variations ; Temperature dependence ; Thermal expansion</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3071629707?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Valenzuela, Victor M</creatorcontrib><creatorcontrib>Teran, Daniel</creatorcontrib><creatorcontrib>Sandoval, Alejandro</creatorcontrib><creatorcontrib>Gomez, Eduardo</creatorcontrib><creatorcontrib>Franco-Villafañe, John A</creatorcontrib><creatorcontrib>Alcantar-Peña, Jesus J</creatorcontrib><creatorcontrib>Ponce-Hernandez, Juan</creatorcontrib><title>Three robust temperature-drift compensation strategies for a MEMS gravimeter</title><title>arXiv.org</title><description>Gravimeters fabricated with MEMS suffer from temperature-dependent drifts in their long-term stability. We analyze the thermal contributions to the signal, and we propose three mechanisms to mitigate their effects. The first one uses materials that fulfill the condition \(\alpha_E=-2 \alpha\), where the thermal expansion is canceled by the temperature variation of the Young's modulus. The second one uses the thermal expansion to introduce a compression that compensates the variation in the force of the spring. In the third one, the expansion compensates the displacement of the proof mass in the sensor, rather than the force. The three mechanisms are robust since they only depend on the temperature of the sensor itself.</description><subject>Gravimeters</subject><subject>Modulus of elasticity</subject><subject>Robustness</subject><subject>Seasonal variations</subject><subject>Temperature dependence</subject><subject>Thermal expansion</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj0trwzAQhEWh0JDmB_QmyNnu6q0cS0gf4NBDfQ-yvU4cGiuV5NCfX4XmMgM7MPsNIU8MSmmVgmcXfodLySXokkm9YndkxoVghZWcP5BFjEcA4NpwpcSMVPUhINLgmykmmvB0xuDSFLDowtAn2vp8GaNLgx9pTDnD_YCR9j5QR7eb7RfdB3cZTpgwPJL73n1HXNx8TurXTb1-L6rPt4_1S1U4xU3RClRXsMzTahBZO8e7zoIUXJq8wRplHRNto20D_MoNstWdso3QFp2Yk-V_7Tn4nwlj2h39FMb8cSfAMM1XBoz4A6Q7TjY</recordid><startdate>20240620</startdate><enddate>20240620</enddate><creator>Valenzuela, Victor M</creator><creator>Teran, Daniel</creator><creator>Sandoval, Alejandro</creator><creator>Gomez, Eduardo</creator><creator>Franco-Villafañe, John A</creator><creator>Alcantar-Peña, Jesus J</creator><creator>Ponce-Hernandez, Juan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240620</creationdate><title>Three robust temperature-drift compensation strategies for a MEMS gravimeter</title><author>Valenzuela, Victor M ; Teran, Daniel ; Sandoval, Alejandro ; Gomez, Eduardo ; Franco-Villafañe, John A ; Alcantar-Peña, Jesus J ; Ponce-Hernandez, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a527-c3e54691422c60322cda2dd80432478558758a13cb68b02842204c6d58b368ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Gravimeters</topic><topic>Modulus of elasticity</topic><topic>Robustness</topic><topic>Seasonal variations</topic><topic>Temperature dependence</topic><topic>Thermal expansion</topic><toplevel>online_resources</toplevel><creatorcontrib>Valenzuela, Victor M</creatorcontrib><creatorcontrib>Teran, Daniel</creatorcontrib><creatorcontrib>Sandoval, Alejandro</creatorcontrib><creatorcontrib>Gomez, Eduardo</creatorcontrib><creatorcontrib>Franco-Villafañe, John A</creatorcontrib><creatorcontrib>Alcantar-Peña, Jesus J</creatorcontrib><creatorcontrib>Ponce-Hernandez, Juan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valenzuela, Victor M</au><au>Teran, Daniel</au><au>Sandoval, Alejandro</au><au>Gomez, Eduardo</au><au>Franco-Villafañe, John A</au><au>Alcantar-Peña, Jesus J</au><au>Ponce-Hernandez, Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three robust temperature-drift compensation strategies for a MEMS gravimeter</atitle><jtitle>arXiv.org</jtitle><date>2024-06-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Gravimeters fabricated with MEMS suffer from temperature-dependent drifts in their long-term stability. We analyze the thermal contributions to the signal, and we propose three mechanisms to mitigate their effects. The first one uses materials that fulfill the condition \(\alpha_E=-2 \alpha\), where the thermal expansion is canceled by the temperature variation of the Young's modulus. The second one uses the thermal expansion to introduce a compression that compensates the variation in the force of the spring. In the third one, the expansion compensates the displacement of the proof mass in the sensor, rather than the force. The three mechanisms are robust since they only depend on the temperature of the sensor itself.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2406.14691</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_3071629707
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Gravimeters
Modulus of elasticity
Robustness
Seasonal variations
Temperature dependence
Thermal expansion
title Three robust temperature-drift compensation strategies for a MEMS gravimeter
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three%20robust%20temperature-drift%20compensation%20strategies%20for%20a%20MEMS%20gravimeter&rft.jtitle=arXiv.org&rft.au=Valenzuela,%20Victor%20M&rft.date=2024-06-20&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2406.14691&rft_dat=%3Cproquest%3E3071629707%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a527-c3e54691422c60322cda2dd80432478558758a13cb68b02842204c6d58b368ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3071629707&rft_id=info:pmid/&rfr_iscdi=true