Loading…
Three robust temperature-drift compensation strategies for a MEMS gravimeter
Gravimeters fabricated with MEMS suffer from temperature-dependent drifts in their long-term stability. We analyze the thermal contributions to the signal, and we propose three mechanisms to mitigate their effects. The first one uses materials that fulfill the condition \(\alpha_E=-2 \alpha\), where...
Saved in:
Published in: | arXiv.org 2024-06 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Valenzuela, Victor M Teran, Daniel Sandoval, Alejandro Gomez, Eduardo Franco-Villafañe, John A Alcantar-Peña, Jesus J Ponce-Hernandez, Juan |
description | Gravimeters fabricated with MEMS suffer from temperature-dependent drifts in their long-term stability. We analyze the thermal contributions to the signal, and we propose three mechanisms to mitigate their effects. The first one uses materials that fulfill the condition \(\alpha_E=-2 \alpha\), where the thermal expansion is canceled by the temperature variation of the Young's modulus. The second one uses the thermal expansion to introduce a compression that compensates the variation in the force of the spring. In the third one, the expansion compensates the displacement of the proof mass in the sensor, rather than the force. The three mechanisms are robust since they only depend on the temperature of the sensor itself. |
doi_str_mv | 10.48550/arxiv.2406.14691 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3071629707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3071629707</sourcerecordid><originalsourceid>FETCH-LOGICAL-a527-c3e54691422c60322cda2dd80432478558758a13cb68b02842204c6d58b368ea3</originalsourceid><addsrcrecordid>eNotj0trwzAQhEWh0JDmB_QmyNnu6q0cS0gf4NBDfQ-yvU4cGiuV5NCfX4XmMgM7MPsNIU8MSmmVgmcXfodLySXokkm9YndkxoVghZWcP5BFjEcA4NpwpcSMVPUhINLgmykmmvB0xuDSFLDowtAn2vp8GaNLgx9pTDnD_YCR9j5QR7eb7RfdB3cZTpgwPJL73n1HXNx8TurXTb1-L6rPt4_1S1U4xU3RClRXsMzTahBZO8e7zoIUXJq8wRplHRNto20D_MoNstWdso3QFp2Yk-V_7Tn4nwlj2h39FMb8cSfAMM1XBoz4A6Q7TjY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3071629707</pqid></control><display><type>article</type><title>Three robust temperature-drift compensation strategies for a MEMS gravimeter</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Valenzuela, Victor M ; Teran, Daniel ; Sandoval, Alejandro ; Gomez, Eduardo ; Franco-Villafañe, John A ; Alcantar-Peña, Jesus J ; Ponce-Hernandez, Juan</creator><creatorcontrib>Valenzuela, Victor M ; Teran, Daniel ; Sandoval, Alejandro ; Gomez, Eduardo ; Franco-Villafañe, John A ; Alcantar-Peña, Jesus J ; Ponce-Hernandez, Juan</creatorcontrib><description>Gravimeters fabricated with MEMS suffer from temperature-dependent drifts in their long-term stability. We analyze the thermal contributions to the signal, and we propose three mechanisms to mitigate their effects. The first one uses materials that fulfill the condition \(\alpha_E=-2 \alpha\), where the thermal expansion is canceled by the temperature variation of the Young's modulus. The second one uses the thermal expansion to introduce a compression that compensates the variation in the force of the spring. In the third one, the expansion compensates the displacement of the proof mass in the sensor, rather than the force. The three mechanisms are robust since they only depend on the temperature of the sensor itself.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2406.14691</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Gravimeters ; Modulus of elasticity ; Robustness ; Seasonal variations ; Temperature dependence ; Thermal expansion</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3071629707?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Valenzuela, Victor M</creatorcontrib><creatorcontrib>Teran, Daniel</creatorcontrib><creatorcontrib>Sandoval, Alejandro</creatorcontrib><creatorcontrib>Gomez, Eduardo</creatorcontrib><creatorcontrib>Franco-Villafañe, John A</creatorcontrib><creatorcontrib>Alcantar-Peña, Jesus J</creatorcontrib><creatorcontrib>Ponce-Hernandez, Juan</creatorcontrib><title>Three robust temperature-drift compensation strategies for a MEMS gravimeter</title><title>arXiv.org</title><description>Gravimeters fabricated with MEMS suffer from temperature-dependent drifts in their long-term stability. We analyze the thermal contributions to the signal, and we propose three mechanisms to mitigate their effects. The first one uses materials that fulfill the condition \(\alpha_E=-2 \alpha\), where the thermal expansion is canceled by the temperature variation of the Young's modulus. The second one uses the thermal expansion to introduce a compression that compensates the variation in the force of the spring. In the third one, the expansion compensates the displacement of the proof mass in the sensor, rather than the force. The three mechanisms are robust since they only depend on the temperature of the sensor itself.</description><subject>Gravimeters</subject><subject>Modulus of elasticity</subject><subject>Robustness</subject><subject>Seasonal variations</subject><subject>Temperature dependence</subject><subject>Thermal expansion</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj0trwzAQhEWh0JDmB_QmyNnu6q0cS0gf4NBDfQ-yvU4cGiuV5NCfX4XmMgM7MPsNIU8MSmmVgmcXfodLySXokkm9YndkxoVghZWcP5BFjEcA4NpwpcSMVPUhINLgmykmmvB0xuDSFLDowtAn2vp8GaNLgx9pTDnD_YCR9j5QR7eb7RfdB3cZTpgwPJL73n1HXNx8TurXTb1-L6rPt4_1S1U4xU3RClRXsMzTahBZO8e7zoIUXJq8wRplHRNto20D_MoNstWdso3QFp2Yk-V_7Tn4nwlj2h39FMb8cSfAMM1XBoz4A6Q7TjY</recordid><startdate>20240620</startdate><enddate>20240620</enddate><creator>Valenzuela, Victor M</creator><creator>Teran, Daniel</creator><creator>Sandoval, Alejandro</creator><creator>Gomez, Eduardo</creator><creator>Franco-Villafañe, John A</creator><creator>Alcantar-Peña, Jesus J</creator><creator>Ponce-Hernandez, Juan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240620</creationdate><title>Three robust temperature-drift compensation strategies for a MEMS gravimeter</title><author>Valenzuela, Victor M ; Teran, Daniel ; Sandoval, Alejandro ; Gomez, Eduardo ; Franco-Villafañe, John A ; Alcantar-Peña, Jesus J ; Ponce-Hernandez, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a527-c3e54691422c60322cda2dd80432478558758a13cb68b02842204c6d58b368ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Gravimeters</topic><topic>Modulus of elasticity</topic><topic>Robustness</topic><topic>Seasonal variations</topic><topic>Temperature dependence</topic><topic>Thermal expansion</topic><toplevel>online_resources</toplevel><creatorcontrib>Valenzuela, Victor M</creatorcontrib><creatorcontrib>Teran, Daniel</creatorcontrib><creatorcontrib>Sandoval, Alejandro</creatorcontrib><creatorcontrib>Gomez, Eduardo</creatorcontrib><creatorcontrib>Franco-Villafañe, John A</creatorcontrib><creatorcontrib>Alcantar-Peña, Jesus J</creatorcontrib><creatorcontrib>Ponce-Hernandez, Juan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valenzuela, Victor M</au><au>Teran, Daniel</au><au>Sandoval, Alejandro</au><au>Gomez, Eduardo</au><au>Franco-Villafañe, John A</au><au>Alcantar-Peña, Jesus J</au><au>Ponce-Hernandez, Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three robust temperature-drift compensation strategies for a MEMS gravimeter</atitle><jtitle>arXiv.org</jtitle><date>2024-06-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Gravimeters fabricated with MEMS suffer from temperature-dependent drifts in their long-term stability. We analyze the thermal contributions to the signal, and we propose three mechanisms to mitigate their effects. The first one uses materials that fulfill the condition \(\alpha_E=-2 \alpha\), where the thermal expansion is canceled by the temperature variation of the Young's modulus. The second one uses the thermal expansion to introduce a compression that compensates the variation in the force of the spring. In the third one, the expansion compensates the displacement of the proof mass in the sensor, rather than the force. The three mechanisms are robust since they only depend on the temperature of the sensor itself.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2406.14691</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3071629707 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Gravimeters Modulus of elasticity Robustness Seasonal variations Temperature dependence Thermal expansion |
title | Three robust temperature-drift compensation strategies for a MEMS gravimeter |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three%20robust%20temperature-drift%20compensation%20strategies%20for%20a%20MEMS%20gravimeter&rft.jtitle=arXiv.org&rft.au=Valenzuela,%20Victor%20M&rft.date=2024-06-20&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2406.14691&rft_dat=%3Cproquest%3E3071629707%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a527-c3e54691422c60322cda2dd80432478558758a13cb68b02842204c6d58b368ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3071629707&rft_id=info:pmid/&rfr_iscdi=true |