Loading…
GiusBERTo: A Legal Language Model for Personal Data De-identification in Italian Court of Auditors Decisions
Recent advances in Natural Language Processing have demonstrated the effectiveness of pretrained language models like BERT for a variety of downstream tasks. We present GiusBERTo, the first BERT-based model specialized for anonymizing personal data in Italian legal documents. GiusBERTo is trained on...
Saved in:
Published in: | arXiv.org 2024-06 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recent advances in Natural Language Processing have demonstrated the effectiveness of pretrained language models like BERT for a variety of downstream tasks. We present GiusBERTo, the first BERT-based model specialized for anonymizing personal data in Italian legal documents. GiusBERTo is trained on a large dataset of Court of Auditors decisions to recognize entities to anonymize, including names, dates, locations, while retaining contextual relevance. We evaluate GiusBERTo on a held-out test set and achieve 97% token-level accuracy. GiusBERTo provides the Italian legal community with an accurate and tailored BERT model for de-identification, balancing privacy and data protection. |
---|---|
ISSN: | 2331-8422 |