Loading…

Voxel-Based Point Cloud Localization for Smart Spaces Management

This paper proposes a voxel-based approach for creating a digital twin of an urban environment that is capable of efficiently managing smart spaces. The paper explains the registration and localization procedure of the point cloud dataset, which uses the KISS ICP for scan point cloud combination and...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-06
Main Authors: Mortazavi, F S, Shkedova, O, Feuerhake, U, Brenner, C, Sester, M
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Mortazavi, F S
Shkedova, O
Feuerhake, U
Brenner, C
Sester, M
description This paper proposes a voxel-based approach for creating a digital twin of an urban environment that is capable of efficiently managing smart spaces. The paper explains the registration and localization procedure of the point cloud dataset, which uses the KISS ICP for scan point cloud combination and the RANSAC method for the initial alignment of the combined point cloud. The mobile mapping point cloud using Riegl VMX-250 serves as the reference map, and Velodyne scans are used for localization purposes. The point-to-plane iterative closest-point method is then employed to refine the alignment. The paper evaluates the efficacy of the proposed method by calculating the errors between the estimated and ground truth positions. The results indicate that the voxel-based approach is capable of accurately estimating the position of the sensor platform, which are applicable for various use cases. A specific use case in the context is smart parking space management, which is described and initial visualization results are shown.
doi_str_mv 10.48550/arxiv.2406.15110
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3071630511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3071630511</sourcerecordid><originalsourceid>FETCH-LOGICAL-a521-21775d2d84f2e92dfa9cf88545a6b2ab8b9706bd6ec170140fdb14d51c489f73</originalsourceid><addsrcrecordid>eNotj0FLwzAYQIMgOOZ-gLeA59Z8X5ImvalFnVBRqHgdX5tEOrpmNp0Mf70DPb3bezzGrkDkymotbmg69t85KlHkoAHEGVuglJBZhXjBVilthRBYGNRaLtjtRzz6Ibun5B1_i_0482qIB8fr2NHQ_9Dcx5GHOPFmR9PMmz11PvEXGunT7_w4X7LzQEPyq38uWfP48F6ts_r16bm6qzPSCBmCMdqhsyqgL9EFKrtgrVaaihaptW1pRNG6wndgBCgRXAvKaeiULYORS3b9Z91P8evg07zZxsM0noIbKQwUUpxW5S--9kni</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3071630511</pqid></control><display><type>article</type><title>Voxel-Based Point Cloud Localization for Smart Spaces Management</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Mortazavi, F S ; Shkedova, O ; Feuerhake, U ; Brenner, C ; Sester, M</creator><creatorcontrib>Mortazavi, F S ; Shkedova, O ; Feuerhake, U ; Brenner, C ; Sester, M</creatorcontrib><description>This paper proposes a voxel-based approach for creating a digital twin of an urban environment that is capable of efficiently managing smart spaces. The paper explains the registration and localization procedure of the point cloud dataset, which uses the KISS ICP for scan point cloud combination and the RANSAC method for the initial alignment of the combined point cloud. The mobile mapping point cloud using Riegl VMX-250 serves as the reference map, and Velodyne scans are used for localization purposes. The point-to-plane iterative closest-point method is then employed to refine the alignment. The paper evaluates the efficacy of the proposed method by calculating the errors between the estimated and ground truth positions. The results indicate that the voxel-based approach is capable of accurately estimating the position of the sensor platform, which are applicable for various use cases. A specific use case in the context is smart parking space management, which is described and initial visualization results are shown.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2406.15110</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Alignment ; Digital twins ; Localization ; Position sensing ; Urban environments</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3071630511?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Mortazavi, F S</creatorcontrib><creatorcontrib>Shkedova, O</creatorcontrib><creatorcontrib>Feuerhake, U</creatorcontrib><creatorcontrib>Brenner, C</creatorcontrib><creatorcontrib>Sester, M</creatorcontrib><title>Voxel-Based Point Cloud Localization for Smart Spaces Management</title><title>arXiv.org</title><description>This paper proposes a voxel-based approach for creating a digital twin of an urban environment that is capable of efficiently managing smart spaces. The paper explains the registration and localization procedure of the point cloud dataset, which uses the KISS ICP for scan point cloud combination and the RANSAC method for the initial alignment of the combined point cloud. The mobile mapping point cloud using Riegl VMX-250 serves as the reference map, and Velodyne scans are used for localization purposes. The point-to-plane iterative closest-point method is then employed to refine the alignment. The paper evaluates the efficacy of the proposed method by calculating the errors between the estimated and ground truth positions. The results indicate that the voxel-based approach is capable of accurately estimating the position of the sensor platform, which are applicable for various use cases. A specific use case in the context is smart parking space management, which is described and initial visualization results are shown.</description><subject>Alignment</subject><subject>Digital twins</subject><subject>Localization</subject><subject>Position sensing</subject><subject>Urban environments</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj0FLwzAYQIMgOOZ-gLeA59Z8X5ImvalFnVBRqHgdX5tEOrpmNp0Mf70DPb3bezzGrkDkymotbmg69t85KlHkoAHEGVuglJBZhXjBVilthRBYGNRaLtjtRzz6Ibun5B1_i_0482qIB8fr2NHQ_9Dcx5GHOPFmR9PMmz11PvEXGunT7_w4X7LzQEPyq38uWfP48F6ts_r16bm6qzPSCBmCMdqhsyqgL9EFKrtgrVaaihaptW1pRNG6wndgBCgRXAvKaeiULYORS3b9Z91P8evg07zZxsM0noIbKQwUUpxW5S--9kni</recordid><startdate>20240621</startdate><enddate>20240621</enddate><creator>Mortazavi, F S</creator><creator>Shkedova, O</creator><creator>Feuerhake, U</creator><creator>Brenner, C</creator><creator>Sester, M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240621</creationdate><title>Voxel-Based Point Cloud Localization for Smart Spaces Management</title><author>Mortazavi, F S ; Shkedova, O ; Feuerhake, U ; Brenner, C ; Sester, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a521-21775d2d84f2e92dfa9cf88545a6b2ab8b9706bd6ec170140fdb14d51c489f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alignment</topic><topic>Digital twins</topic><topic>Localization</topic><topic>Position sensing</topic><topic>Urban environments</topic><toplevel>online_resources</toplevel><creatorcontrib>Mortazavi, F S</creatorcontrib><creatorcontrib>Shkedova, O</creatorcontrib><creatorcontrib>Feuerhake, U</creatorcontrib><creatorcontrib>Brenner, C</creatorcontrib><creatorcontrib>Sester, M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mortazavi, F S</au><au>Shkedova, O</au><au>Feuerhake, U</au><au>Brenner, C</au><au>Sester, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Voxel-Based Point Cloud Localization for Smart Spaces Management</atitle><jtitle>arXiv.org</jtitle><date>2024-06-21</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This paper proposes a voxel-based approach for creating a digital twin of an urban environment that is capable of efficiently managing smart spaces. The paper explains the registration and localization procedure of the point cloud dataset, which uses the KISS ICP for scan point cloud combination and the RANSAC method for the initial alignment of the combined point cloud. The mobile mapping point cloud using Riegl VMX-250 serves as the reference map, and Velodyne scans are used for localization purposes. The point-to-plane iterative closest-point method is then employed to refine the alignment. The paper evaluates the efficacy of the proposed method by calculating the errors between the estimated and ground truth positions. The results indicate that the voxel-based approach is capable of accurately estimating the position of the sensor platform, which are applicable for various use cases. A specific use case in the context is smart parking space management, which is described and initial visualization results are shown.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2406.15110</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_3071630511
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Alignment
Digital twins
Localization
Position sensing
Urban environments
title Voxel-Based Point Cloud Localization for Smart Spaces Management
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A03%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Voxel-Based%20Point%20Cloud%20Localization%20for%20Smart%20Spaces%20Management&rft.jtitle=arXiv.org&rft.au=Mortazavi,%20F%20S&rft.date=2024-06-21&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2406.15110&rft_dat=%3Cproquest%3E3071630511%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a521-21775d2d84f2e92dfa9cf88545a6b2ab8b9706bd6ec170140fdb14d51c489f73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3071630511&rft_id=info:pmid/&rfr_iscdi=true