Loading…

Synthesis, structure, and small molecule in situ modification effects on proton conduction properties of triazine‐based triscarboxylic acid complexe

In this study, we synthesized and characterized a new Co(II)‐based coordination polymer, denoted as {[Co(HL)(dpa)]·H2O}n (1), derived from the H3L ligand and dpa co‐ligand. Single crystal X‐ray diffraction revealed that 1 forms a two‐dimensional (2D) layer and a three‐dimensional (3D) supramolecular...

Full description

Saved in:
Bibliographic Details
Published in:Applied organometallic chemistry 2024-07, Vol.38 (7), p.n/a
Main Authors: Li, Duqingcuo, Qin, Tianrui, Shi, Zhan, Li, Yuyan, Dong, Xiuyan, Muddassir, Mohd, Kushwaha, Aparna, Srivastava, Devyani, Kumar, Abhinav
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, we synthesized and characterized a new Co(II)‐based coordination polymer, denoted as {[Co(HL)(dpa)]·H2O}n (1), derived from the H3L ligand and dpa co‐ligand. Single crystal X‐ray diffraction revealed that 1 forms a two‐dimensional (2D) layer and a three‐dimensional (3D) supramolecular structure via hydrogen bonding interactions. Presence of carboxylic acid groups in 1 was confirmed by X‐ray crystallography, prompting investigation into its proton transport properties. Additionally, electrostatic potential surface and nucleophilic index analyses were conducted to simulate potential proton transfer pathways. Furthermore, we prepared nine modified encapsulated materials using 1 as the base material (SDA@1, APH@1, APY@1, TA@1, BA@1, DIC@1, IDZ@1, SCA@1, and TYD@1), and tested their proton conductivity and activation energy compared to pure Nafion membrane and 1, analyzing the influence of different small molecule structures on proton conductivity. Comparative analysis revealed that only SDA@1 exhibited enhanced proton conductivity and reduced activation energy at 303 K, with an improvement rate of 220.8%. We hope that the methods presented herein can provide valuable insights for the design and development of high‐performance proton‐conducting materials, as well as for the exploration of proton conduction mechanisms. A novel 2D Co‐based coordination polymer, denoted as 1, was synthesized. The proton conductivity of 1 was investigated. Additionally, in situ modifications were carried out using nine small molecules. Remarkably, at 303 K, only sodium acetate modification of 1 exhibited enhanced proton conductivity, with an improvement rate of 220.8%.
ISSN:0268-2605
1099-0739
DOI:10.1002/aoc.7498