Loading…
Sulfur Vacancy‐Rich Bi2S3‐X@PDA Heterojunctions with Light‐Controlled Reactive Oxygen Species Generation and Elimination to Combat Biofilm Infection and Inflammation Caused by Drug‐Resistant Bacteria
Antibacterial photocatalytic therapy (APCT) is one of the most promising non‐antibiotic treatment strategies for biofilm‐infected wounds and inflammation caused by drug‐resistant bacteria. However, it still faces issues such as inadequate single antibacterial capacity and lack of antioxidant capacit...
Saved in:
Published in: | Advanced functional materials 2024-06, Vol.34 (26), p.n/a |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | n/a |
container_issue | 26 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 34 |
creator | Mo, Dong Pan, Meng Chen, Wen Liu, Qingya Yu, Yan Yuan, Liping Yang, Yun Deng, Hanzhi Wang, Meng Qian, Zhiyong |
description | Antibacterial photocatalytic therapy (APCT) is one of the most promising non‐antibiotic treatment strategies for biofilm‐infected wounds and inflammation caused by drug‐resistant bacteria. However, it still faces issues such as inadequate single antibacterial capacity and lack of antioxidant capacity. In this study, a Z‐scheme heterojunction (Bi2S3‐X@PDA) is designed using a polydopamine (PDA) shell firmly anchored to the surface of sulfur vacancy‐rich bismuth sulfide nanorods (Bi2S3‐X NRs). Under near‐infrared light and hydrogen peroxide, Bi2S3‐X@PDA significantly improves the photocatalytic efficiency of reactive oxygen species generation and shows a nearly 100% broad‐spectrum antibacterial effect against multiple bacterial strains and bacterial biofilms in vitro. Interestingly, the antioxidant activity of the PDA shell in Bi2S3‐X@PDA remarkably downregulates the expression of pro‐inflammatory factors and promotes macrophage reprogramming toward the proregenerative M2 phenotype. In a mouse wound model of methicillin‐resistant Staphylococcus aureus biofilm infection, Bi2S3‐X@PDA effectively eliminates drug‐resistant bacterial biofilms through APCT/mild photothermal therapy, while reducing inflammation in normal tissues and regulating the immune microenvironment, thereby promoting rapid wound healing. Overall, this light‐controlled treatment strategy, which provides both antibacterial and anti‐inflammatory functions, is a reliable tool for combating biofilm infection and inflammation caused by drug‐resistant bacteria.
Bi2S3‐X@PDA heterojunctions capable of light‐controlled antibacterial and anti‐inflammatory functions are synthesized and characterized both in vitro and in vivo in this study. The constructed Bi2S3‐X@PDA heterojunctions demonstrate excellent photocatalytic activity and effectively combat methicillin‐resistant Staphylococcus aureus biofilm infection as well as reducing inflammation caused by drug‐resistant bacteria. This heterojunction material provides new directions for the design of next‐generation intelligent dressings. |
doi_str_mv | 10.1002/adfm.202313569 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3072139299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072139299</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2339-db518ca5614b42c2df24197367d457b43df373bde86bc64914e86c38fbb165f23</originalsourceid><addsrcrecordid>eNo9kctu2zAQRYWiBZqm2XZNIGu7fOhh7eLKjwRwkSBOiuwEkhraNCTSJakm2uUT8mf5h35Jabjwau4Fzswd4CbJN4LHBGP6nTeqG1NMGWFZXn5IzkhO8hHDdPLxpMnT5-SL9zuMSVGw9Cx5X_et6h36xSU3cvj7-nav5Rb90HTNonm6uptN0TUEcHbXGxm0NR4967BFK73ZhohU1gRn2xYadA88En8A3b4MGzBovQepwaMlGHD8sIu4adC81Z02Rx8sqmwneIiRVum2QzdGgTyx0bW8645wxXsfY8SAZq7fHH4Fr33gJm7HZHCaf00-Kd56uPg_z5PHxfyhuh6tbpc31XQ12lPGylEjMjKRPMtJKlIqaaNoSsqC5UWTZoVIWaNYwUQDk1zIPC1JGpVkEyUEyTNF2Xlyeby7d_Z3Dz7UO9s7EyNrhgtKWEnLMlLlkXrWLQz13umOu6EmuD40Vh8aq0-N1dPZ4ufJsX-zfJQR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072139299</pqid></control><display><type>article</type><title>Sulfur Vacancy‐Rich Bi2S3‐X@PDA Heterojunctions with Light‐Controlled Reactive Oxygen Species Generation and Elimination to Combat Biofilm Infection and Inflammation Caused by Drug‐Resistant Bacteria</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Mo, Dong ; Pan, Meng ; Chen, Wen ; Liu, Qingya ; Yu, Yan ; Yuan, Liping ; Yang, Yun ; Deng, Hanzhi ; Wang, Meng ; Qian, Zhiyong</creator><creatorcontrib>Mo, Dong ; Pan, Meng ; Chen, Wen ; Liu, Qingya ; Yu, Yan ; Yuan, Liping ; Yang, Yun ; Deng, Hanzhi ; Wang, Meng ; Qian, Zhiyong</creatorcontrib><description>Antibacterial photocatalytic therapy (APCT) is one of the most promising non‐antibiotic treatment strategies for biofilm‐infected wounds and inflammation caused by drug‐resistant bacteria. However, it still faces issues such as inadequate single antibacterial capacity and lack of antioxidant capacity. In this study, a Z‐scheme heterojunction (Bi2S3‐X@PDA) is designed using a polydopamine (PDA) shell firmly anchored to the surface of sulfur vacancy‐rich bismuth sulfide nanorods (Bi2S3‐X NRs). Under near‐infrared light and hydrogen peroxide, Bi2S3‐X@PDA significantly improves the photocatalytic efficiency of reactive oxygen species generation and shows a nearly 100% broad‐spectrum antibacterial effect against multiple bacterial strains and bacterial biofilms in vitro. Interestingly, the antioxidant activity of the PDA shell in Bi2S3‐X@PDA remarkably downregulates the expression of pro‐inflammatory factors and promotes macrophage reprogramming toward the proregenerative M2 phenotype. In a mouse wound model of methicillin‐resistant Staphylococcus aureus biofilm infection, Bi2S3‐X@PDA effectively eliminates drug‐resistant bacterial biofilms through APCT/mild photothermal therapy, while reducing inflammation in normal tissues and regulating the immune microenvironment, thereby promoting rapid wound healing. Overall, this light‐controlled treatment strategy, which provides both antibacterial and anti‐inflammatory functions, is a reliable tool for combating biofilm infection and inflammation caused by drug‐resistant bacteria.
Bi2S3‐X@PDA heterojunctions capable of light‐controlled antibacterial and anti‐inflammatory functions are synthesized and characterized both in vitro and in vivo in this study. The constructed Bi2S3‐X@PDA heterojunctions demonstrate excellent photocatalytic activity and effectively combat methicillin‐resistant Staphylococcus aureus biofilm infection as well as reducing inflammation caused by drug‐resistant bacteria. This heterojunction material provides new directions for the design of next‐generation intelligent dressings.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202313569</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>antibacterial photcatalytic therapy ; Antiinfectives and antibacterials ; Antioxidants ; Bacteria ; Biofilms ; Bismuth sulfides ; Heterojunctions ; Hydrogen peroxide ; Infections ; Inflammation ; methicillin‐resistant Staphylococcus aureus ; Nanorods ; Oxygen ; Photocatalysis ; reactive oxygen species ; Sulfur ; Wound healing</subject><ispartof>Advanced functional materials, 2024-06, Vol.34 (26), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2992-6424 ; 0009-0008-1427-077X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mo, Dong</creatorcontrib><creatorcontrib>Pan, Meng</creatorcontrib><creatorcontrib>Chen, Wen</creatorcontrib><creatorcontrib>Liu, Qingya</creatorcontrib><creatorcontrib>Yu, Yan</creatorcontrib><creatorcontrib>Yuan, Liping</creatorcontrib><creatorcontrib>Yang, Yun</creatorcontrib><creatorcontrib>Deng, Hanzhi</creatorcontrib><creatorcontrib>Wang, Meng</creatorcontrib><creatorcontrib>Qian, Zhiyong</creatorcontrib><title>Sulfur Vacancy‐Rich Bi2S3‐X@PDA Heterojunctions with Light‐Controlled Reactive Oxygen Species Generation and Elimination to Combat Biofilm Infection and Inflammation Caused by Drug‐Resistant Bacteria</title><title>Advanced functional materials</title><description>Antibacterial photocatalytic therapy (APCT) is one of the most promising non‐antibiotic treatment strategies for biofilm‐infected wounds and inflammation caused by drug‐resistant bacteria. However, it still faces issues such as inadequate single antibacterial capacity and lack of antioxidant capacity. In this study, a Z‐scheme heterojunction (Bi2S3‐X@PDA) is designed using a polydopamine (PDA) shell firmly anchored to the surface of sulfur vacancy‐rich bismuth sulfide nanorods (Bi2S3‐X NRs). Under near‐infrared light and hydrogen peroxide, Bi2S3‐X@PDA significantly improves the photocatalytic efficiency of reactive oxygen species generation and shows a nearly 100% broad‐spectrum antibacterial effect against multiple bacterial strains and bacterial biofilms in vitro. Interestingly, the antioxidant activity of the PDA shell in Bi2S3‐X@PDA remarkably downregulates the expression of pro‐inflammatory factors and promotes macrophage reprogramming toward the proregenerative M2 phenotype. In a mouse wound model of methicillin‐resistant Staphylococcus aureus biofilm infection, Bi2S3‐X@PDA effectively eliminates drug‐resistant bacterial biofilms through APCT/mild photothermal therapy, while reducing inflammation in normal tissues and regulating the immune microenvironment, thereby promoting rapid wound healing. Overall, this light‐controlled treatment strategy, which provides both antibacterial and anti‐inflammatory functions, is a reliable tool for combating biofilm infection and inflammation caused by drug‐resistant bacteria.
Bi2S3‐X@PDA heterojunctions capable of light‐controlled antibacterial and anti‐inflammatory functions are synthesized and characterized both in vitro and in vivo in this study. The constructed Bi2S3‐X@PDA heterojunctions demonstrate excellent photocatalytic activity and effectively combat methicillin‐resistant Staphylococcus aureus biofilm infection as well as reducing inflammation caused by drug‐resistant bacteria. This heterojunction material provides new directions for the design of next‐generation intelligent dressings.</description><subject>antibacterial photcatalytic therapy</subject><subject>Antiinfectives and antibacterials</subject><subject>Antioxidants</subject><subject>Bacteria</subject><subject>Biofilms</subject><subject>Bismuth sulfides</subject><subject>Heterojunctions</subject><subject>Hydrogen peroxide</subject><subject>Infections</subject><subject>Inflammation</subject><subject>methicillin‐resistant Staphylococcus aureus</subject><subject>Nanorods</subject><subject>Oxygen</subject><subject>Photocatalysis</subject><subject>reactive oxygen species</subject><subject>Sulfur</subject><subject>Wound healing</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kctu2zAQRYWiBZqm2XZNIGu7fOhh7eLKjwRwkSBOiuwEkhraNCTSJakm2uUT8mf5h35Jabjwau4Fzswd4CbJN4LHBGP6nTeqG1NMGWFZXn5IzkhO8hHDdPLxpMnT5-SL9zuMSVGw9Cx5X_et6h36xSU3cvj7-nav5Rb90HTNonm6uptN0TUEcHbXGxm0NR4967BFK73ZhohU1gRn2xYadA88En8A3b4MGzBovQepwaMlGHD8sIu4adC81Z02Rx8sqmwneIiRVum2QzdGgTyx0bW8645wxXsfY8SAZq7fHH4Fr33gJm7HZHCaf00-Kd56uPg_z5PHxfyhuh6tbpc31XQ12lPGylEjMjKRPMtJKlIqaaNoSsqC5UWTZoVIWaNYwUQDk1zIPC1JGpVkEyUEyTNF2Xlyeby7d_Z3Dz7UO9s7EyNrhgtKWEnLMlLlkXrWLQz13umOu6EmuD40Vh8aq0-N1dPZ4ufJsX-zfJQR</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Mo, Dong</creator><creator>Pan, Meng</creator><creator>Chen, Wen</creator><creator>Liu, Qingya</creator><creator>Yu, Yan</creator><creator>Yuan, Liping</creator><creator>Yang, Yun</creator><creator>Deng, Hanzhi</creator><creator>Wang, Meng</creator><creator>Qian, Zhiyong</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2992-6424</orcidid><orcidid>https://orcid.org/0009-0008-1427-077X</orcidid></search><sort><creationdate>20240601</creationdate><title>Sulfur Vacancy‐Rich Bi2S3‐X@PDA Heterojunctions with Light‐Controlled Reactive Oxygen Species Generation and Elimination to Combat Biofilm Infection and Inflammation Caused by Drug‐Resistant Bacteria</title><author>Mo, Dong ; Pan, Meng ; Chen, Wen ; Liu, Qingya ; Yu, Yan ; Yuan, Liping ; Yang, Yun ; Deng, Hanzhi ; Wang, Meng ; Qian, Zhiyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2339-db518ca5614b42c2df24197367d457b43df373bde86bc64914e86c38fbb165f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>antibacterial photcatalytic therapy</topic><topic>Antiinfectives and antibacterials</topic><topic>Antioxidants</topic><topic>Bacteria</topic><topic>Biofilms</topic><topic>Bismuth sulfides</topic><topic>Heterojunctions</topic><topic>Hydrogen peroxide</topic><topic>Infections</topic><topic>Inflammation</topic><topic>methicillin‐resistant Staphylococcus aureus</topic><topic>Nanorods</topic><topic>Oxygen</topic><topic>Photocatalysis</topic><topic>reactive oxygen species</topic><topic>Sulfur</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mo, Dong</creatorcontrib><creatorcontrib>Pan, Meng</creatorcontrib><creatorcontrib>Chen, Wen</creatorcontrib><creatorcontrib>Liu, Qingya</creatorcontrib><creatorcontrib>Yu, Yan</creatorcontrib><creatorcontrib>Yuan, Liping</creatorcontrib><creatorcontrib>Yang, Yun</creatorcontrib><creatorcontrib>Deng, Hanzhi</creatorcontrib><creatorcontrib>Wang, Meng</creatorcontrib><creatorcontrib>Qian, Zhiyong</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mo, Dong</au><au>Pan, Meng</au><au>Chen, Wen</au><au>Liu, Qingya</au><au>Yu, Yan</au><au>Yuan, Liping</au><au>Yang, Yun</au><au>Deng, Hanzhi</au><au>Wang, Meng</au><au>Qian, Zhiyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sulfur Vacancy‐Rich Bi2S3‐X@PDA Heterojunctions with Light‐Controlled Reactive Oxygen Species Generation and Elimination to Combat Biofilm Infection and Inflammation Caused by Drug‐Resistant Bacteria</atitle><jtitle>Advanced functional materials</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>34</volume><issue>26</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Antibacterial photocatalytic therapy (APCT) is one of the most promising non‐antibiotic treatment strategies for biofilm‐infected wounds and inflammation caused by drug‐resistant bacteria. However, it still faces issues such as inadequate single antibacterial capacity and lack of antioxidant capacity. In this study, a Z‐scheme heterojunction (Bi2S3‐X@PDA) is designed using a polydopamine (PDA) shell firmly anchored to the surface of sulfur vacancy‐rich bismuth sulfide nanorods (Bi2S3‐X NRs). Under near‐infrared light and hydrogen peroxide, Bi2S3‐X@PDA significantly improves the photocatalytic efficiency of reactive oxygen species generation and shows a nearly 100% broad‐spectrum antibacterial effect against multiple bacterial strains and bacterial biofilms in vitro. Interestingly, the antioxidant activity of the PDA shell in Bi2S3‐X@PDA remarkably downregulates the expression of pro‐inflammatory factors and promotes macrophage reprogramming toward the proregenerative M2 phenotype. In a mouse wound model of methicillin‐resistant Staphylococcus aureus biofilm infection, Bi2S3‐X@PDA effectively eliminates drug‐resistant bacterial biofilms through APCT/mild photothermal therapy, while reducing inflammation in normal tissues and regulating the immune microenvironment, thereby promoting rapid wound healing. Overall, this light‐controlled treatment strategy, which provides both antibacterial and anti‐inflammatory functions, is a reliable tool for combating biofilm infection and inflammation caused by drug‐resistant bacteria.
Bi2S3‐X@PDA heterojunctions capable of light‐controlled antibacterial and anti‐inflammatory functions are synthesized and characterized both in vitro and in vivo in this study. The constructed Bi2S3‐X@PDA heterojunctions demonstrate excellent photocatalytic activity and effectively combat methicillin‐resistant Staphylococcus aureus biofilm infection as well as reducing inflammation caused by drug‐resistant bacteria. This heterojunction material provides new directions for the design of next‐generation intelligent dressings.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202313569</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-2992-6424</orcidid><orcidid>https://orcid.org/0009-0008-1427-077X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-06, Vol.34 (26), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_3072139299 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | antibacterial photcatalytic therapy Antiinfectives and antibacterials Antioxidants Bacteria Biofilms Bismuth sulfides Heterojunctions Hydrogen peroxide Infections Inflammation methicillin‐resistant Staphylococcus aureus Nanorods Oxygen Photocatalysis reactive oxygen species Sulfur Wound healing |
title | Sulfur Vacancy‐Rich Bi2S3‐X@PDA Heterojunctions with Light‐Controlled Reactive Oxygen Species Generation and Elimination to Combat Biofilm Infection and Inflammation Caused by Drug‐Resistant Bacteria |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T11%3A01%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sulfur%20Vacancy%E2%80%90Rich%20Bi2S3%E2%80%90X@PDA%20Heterojunctions%20with%20Light%E2%80%90Controlled%20Reactive%20Oxygen%20Species%20Generation%20and%20Elimination%20to%20Combat%20Biofilm%20Infection%20and%20Inflammation%20Caused%20by%20Drug%E2%80%90Resistant%20Bacteria&rft.jtitle=Advanced%20functional%20materials&rft.au=Mo,%20Dong&rft.date=2024-06-01&rft.volume=34&rft.issue=26&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202313569&rft_dat=%3Cproquest_wiley%3E3072139299%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2339-db518ca5614b42c2df24197367d457b43df373bde86bc64914e86c38fbb165f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3072139299&rft_id=info:pmid/&rfr_iscdi=true |