Loading…

A Selberg Trace Formula for GL3(Fp)∖GL3(Fq)/K

In this paper, we prove a discrete analog of the Selberg Trace Formula for the group GL3(Fq). By considering a cubic extension of the finite field Fq, we define an analog of the upper half-space and an action of GL3(Fq) on it. To compute the orbital sums, we explicitly identify the double coset spac...

Full description

Saved in:
Bibliographic Details
Published in:Axioms 2024-06, Vol.13 (6), p.381
Main Authors: Aggarwal, Daksh, Ghorbanpour, Asghar, Khalkhali, Masoud, Lu, Jiyuan, Németh, Balázs, Yu, C Shijia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c192t-fad2643b03dadfb5b0ce59fd4220455e34a62c66b6aa51d6740276c6b24d25f83
container_end_page
container_issue 6
container_start_page 381
container_title Axioms
container_volume 13
creator Aggarwal, Daksh
Ghorbanpour, Asghar
Khalkhali, Masoud
Lu, Jiyuan
Németh, Balázs
Yu, C Shijia
description In this paper, we prove a discrete analog of the Selberg Trace Formula for the group GL3(Fq). By considering a cubic extension of the finite field Fq, we define an analog of the upper half-space and an action of GL3(Fq) on it. To compute the orbital sums, we explicitly identify the double coset spaces and fundamental domains in our upper half space. To understand the spectral side of the trace formula, we decompose the induced representation ρ=IndΓG1 for G=GL3(Fq) and Γ=GL3(Fp).
doi_str_mv 10.3390/axioms13060381
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3072271675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072271675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c192t-fad2643b03dadfb5b0ce59fd4220455e34a62c66b6aa51d6740276c6b24d25f83</originalsourceid><addsrcrecordid>eNpVkL1OwzAcxC0EElXpyhyJhQ5p_v5OxqoiBRGJgTJbtmOjVglJ7UaCN-AJeECehEAZ4Ja74ac76RC6xLCgtIBMv267NmIKAmiOT9CEgOQpFjmc_snnaBbjDkYVeMToBGXL5NE1xoXnZBO0dUnZhXZodOK7kKwrel3288_3j5-0n2f3F-jM6ya62a9P0VN5s1ndptXD-m61rFKLC3JIva6JYNQArXXtDTdgHS98zQgBxrmjTAtihTBCa45rIRkQKawwhNWE-5xO0dWxtw_dfnDxoHbdEF7GSUVBEiKxkHykFkfKhi7G4Lzqw7bV4U1hUN-_qP-_0C_-E1ON</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072271675</pqid></control><display><type>article</type><title>A Selberg Trace Formula for GL3(Fp)∖GL3(Fq)/K</title><source>Publicly Available Content (ProQuest)</source><creator>Aggarwal, Daksh ; Ghorbanpour, Asghar ; Khalkhali, Masoud ; Lu, Jiyuan ; Németh, Balázs ; Yu, C Shijia</creator><creatorcontrib>Aggarwal, Daksh ; Ghorbanpour, Asghar ; Khalkhali, Masoud ; Lu, Jiyuan ; Németh, Balázs ; Yu, C Shijia</creatorcontrib><description>In this paper, we prove a discrete analog of the Selberg Trace Formula for the group GL3(Fq). By considering a cubic extension of the finite field Fq, we define an analog of the upper half-space and an action of GL3(Fq) on it. To compute the orbital sums, we explicitly identify the double coset spaces and fundamental domains in our upper half space. To understand the spectral side of the trace formula, we decompose the induced representation ρ=IndΓG1 for G=GL3(Fq) and Γ=GL3(Fp).</description><identifier>ISSN: 2075-1680</identifier><identifier>EISSN: 2075-1680</identifier><identifier>DOI: 10.3390/axioms13060381</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Fields (mathematics) ; Fourier transforms ; Graphs ; Half spaces</subject><ispartof>Axioms, 2024-06, Vol.13 (6), p.381</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c192t-fad2643b03dadfb5b0ce59fd4220455e34a62c66b6aa51d6740276c6b24d25f83</cites><orcidid>0000-0003-2552-0208 ; 0009-0001-2163-0365 ; 0000-0001-8281-8321</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3072271675/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3072271675?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Aggarwal, Daksh</creatorcontrib><creatorcontrib>Ghorbanpour, Asghar</creatorcontrib><creatorcontrib>Khalkhali, Masoud</creatorcontrib><creatorcontrib>Lu, Jiyuan</creatorcontrib><creatorcontrib>Németh, Balázs</creatorcontrib><creatorcontrib>Yu, C Shijia</creatorcontrib><title>A Selberg Trace Formula for GL3(Fp)∖GL3(Fq)/K</title><title>Axioms</title><description>In this paper, we prove a discrete analog of the Selberg Trace Formula for the group GL3(Fq). By considering a cubic extension of the finite field Fq, we define an analog of the upper half-space and an action of GL3(Fq) on it. To compute the orbital sums, we explicitly identify the double coset spaces and fundamental domains in our upper half space. To understand the spectral side of the trace formula, we decompose the induced representation ρ=IndΓG1 for G=GL3(Fq) and Γ=GL3(Fp).</description><subject>Fields (mathematics)</subject><subject>Fourier transforms</subject><subject>Graphs</subject><subject>Half spaces</subject><issn>2075-1680</issn><issn>2075-1680</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpVkL1OwzAcxC0EElXpyhyJhQ5p_v5OxqoiBRGJgTJbtmOjVglJ7UaCN-AJeECehEAZ4Ja74ac76RC6xLCgtIBMv267NmIKAmiOT9CEgOQpFjmc_snnaBbjDkYVeMToBGXL5NE1xoXnZBO0dUnZhXZodOK7kKwrel3288_3j5-0n2f3F-jM6ya62a9P0VN5s1ndptXD-m61rFKLC3JIva6JYNQArXXtDTdgHS98zQgBxrmjTAtihTBCa45rIRkQKawwhNWE-5xO0dWxtw_dfnDxoHbdEF7GSUVBEiKxkHykFkfKhi7G4Lzqw7bV4U1hUN-_qP-_0C_-E1ON</recordid><startdate>20240604</startdate><enddate>20240604</enddate><creator>Aggarwal, Daksh</creator><creator>Ghorbanpour, Asghar</creator><creator>Khalkhali, Masoud</creator><creator>Lu, Jiyuan</creator><creator>Németh, Balázs</creator><creator>Yu, C Shijia</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-2552-0208</orcidid><orcidid>https://orcid.org/0009-0001-2163-0365</orcidid><orcidid>https://orcid.org/0000-0001-8281-8321</orcidid></search><sort><creationdate>20240604</creationdate><title>A Selberg Trace Formula for GL3(Fp)∖GL3(Fq)/K</title><author>Aggarwal, Daksh ; Ghorbanpour, Asghar ; Khalkhali, Masoud ; Lu, Jiyuan ; Németh, Balázs ; Yu, C Shijia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c192t-fad2643b03dadfb5b0ce59fd4220455e34a62c66b6aa51d6740276c6b24d25f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Fields (mathematics)</topic><topic>Fourier transforms</topic><topic>Graphs</topic><topic>Half spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aggarwal, Daksh</creatorcontrib><creatorcontrib>Ghorbanpour, Asghar</creatorcontrib><creatorcontrib>Khalkhali, Masoud</creatorcontrib><creatorcontrib>Lu, Jiyuan</creatorcontrib><creatorcontrib>Németh, Balázs</creatorcontrib><creatorcontrib>Yu, C Shijia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Axioms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aggarwal, Daksh</au><au>Ghorbanpour, Asghar</au><au>Khalkhali, Masoud</au><au>Lu, Jiyuan</au><au>Németh, Balázs</au><au>Yu, C Shijia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Selberg Trace Formula for GL3(Fp)∖GL3(Fq)/K</atitle><jtitle>Axioms</jtitle><date>2024-06-04</date><risdate>2024</risdate><volume>13</volume><issue>6</issue><spage>381</spage><pages>381-</pages><issn>2075-1680</issn><eissn>2075-1680</eissn><abstract>In this paper, we prove a discrete analog of the Selberg Trace Formula for the group GL3(Fq). By considering a cubic extension of the finite field Fq, we define an analog of the upper half-space and an action of GL3(Fq) on it. To compute the orbital sums, we explicitly identify the double coset spaces and fundamental domains in our upper half space. To understand the spectral side of the trace formula, we decompose the induced representation ρ=IndΓG1 for G=GL3(Fq) and Γ=GL3(Fp).</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/axioms13060381</doi><orcidid>https://orcid.org/0000-0003-2552-0208</orcidid><orcidid>https://orcid.org/0009-0001-2163-0365</orcidid><orcidid>https://orcid.org/0000-0001-8281-8321</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-1680
ispartof Axioms, 2024-06, Vol.13 (6), p.381
issn 2075-1680
2075-1680
language eng
recordid cdi_proquest_journals_3072271675
source Publicly Available Content (ProQuest)
subjects Fields (mathematics)
Fourier transforms
Graphs
Half spaces
title A Selberg Trace Formula for GL3(Fp)∖GL3(Fq)/K
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A29%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Selberg%20Trace%20Formula%20for%20GL3(Fp)%E2%88%96GL3(Fq)/K&rft.jtitle=Axioms&rft.au=Aggarwal,%20Daksh&rft.date=2024-06-04&rft.volume=13&rft.issue=6&rft.spage=381&rft.pages=381-&rft.issn=2075-1680&rft.eissn=2075-1680&rft_id=info:doi/10.3390/axioms13060381&rft_dat=%3Cproquest_cross%3E3072271675%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c192t-fad2643b03dadfb5b0ce59fd4220455e34a62c66b6aa51d6740276c6b24d25f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3072271675&rft_id=info:pmid/&rfr_iscdi=true