Loading…

Control Barrier Functions With Circulation Inequalities

Control barrier functions (CBFs) when paired with quadratic programming (QP) offer an increasingly popular framework for control considering critical safety constraints. However, being closely related to artificial potential fields, they suffer from the classical stable spurious equilibrium point pr...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on control systems technology 2024-07, Vol.32 (4), p.1426-1441
Main Authors: Goncalves, Vinicius Mariano, Krishnamurthy, Prashanth, Tzes, Anthony, Khorrami, Farshad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c246t-7b25069a679da526253f40ad36aa991313b21d18a73c998a4ccf2738beebad793
container_end_page 1441
container_issue 4
container_start_page 1426
container_title IEEE transactions on control systems technology
container_volume 32
creator Goncalves, Vinicius Mariano
Krishnamurthy, Prashanth
Tzes, Anthony
Khorrami, Farshad
description Control barrier functions (CBFs) when paired with quadratic programming (QP) offer an increasingly popular framework for control considering critical safety constraints. However, being closely related to artificial potential fields, they suffer from the classical stable spurious equilibrium point problem, in which the controller can fail to drive the system to the goal. The main contribution of this article is showing that this problem can be mitigated by introducing a circulation inequality as a constraint, which forces the system to explicitly circulate obstacles under some conditions. This circulation is introduced in the configuration space and is simple to implement once we have the CBF-constraint, adding a negligible complexity to the resulting optimization problem. Theoretical guarantees are provided for this framework, indicating, under appropriate conditions, the feasibility of the resulting optimization problem, continuity of the control input, characterization of the equilibrium points, a weak form of Lyapunov stability, and uniqueness of the equilibrium points. The provided experimental studies showcase the overall properties and applicability in different scenarios.
doi_str_mv 10.1109/TCST.2024.3372802
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3072327651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10472718</ieee_id><sourcerecordid>3072327651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-7b25069a679da526253f40ad36aa991313b21d18a73c998a4ccf2738beebad793</originalsourceid><addsrcrecordid>eNpNkE1LxDAQhoMouH78AMFDwXPXZKb5OmpxdWHBgyseQ5qmmKW2u0l78N_bsnvwNC_D887AQ8gdo0vGqH7clh_bJVAologSFIUzsmCcq5wqwc-nTAXmgqO4JFcp7ShlBQe5ILLsuyH2bfZsYww-Zquxc0Pou5R9heE7K0N0Y2vnTbbu_GG0bRiCTzfkorFt8reneU0-Vy_b8i3fvL-uy6dN7qAQQy4r4FRoK6SuLQcBHJuC2hqFtVozZFgBq5myEp3WyhbONSBRVd5XtpYar8nD8e4-9ofRp8Hs-jF200uDVAKCFJxNFDtSLvYpRd-YfQw_Nv4aRs3sx8x-zOzHnPxMnftjJ3jv__GFBMkU_gHip2CN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072327651</pqid></control><display><type>article</type><title>Control Barrier Functions With Circulation Inequalities</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Goncalves, Vinicius Mariano ; Krishnamurthy, Prashanth ; Tzes, Anthony ; Khorrami, Farshad</creator><creatorcontrib>Goncalves, Vinicius Mariano ; Krishnamurthy, Prashanth ; Tzes, Anthony ; Khorrami, Farshad</creatorcontrib><description>Control barrier functions (CBFs) when paired with quadratic programming (QP) offer an increasingly popular framework for control considering critical safety constraints. However, being closely related to artificial potential fields, they suffer from the classical stable spurious equilibrium point problem, in which the controller can fail to drive the system to the goal. The main contribution of this article is showing that this problem can be mitigated by introducing a circulation inequality as a constraint, which forces the system to explicitly circulate obstacles under some conditions. This circulation is introduced in the configuration space and is simple to implement once we have the CBF-constraint, adding a negligible complexity to the resulting optimization problem. Theoretical guarantees are provided for this framework, indicating, under appropriate conditions, the feasibility of the resulting optimization problem, continuity of the control input, characterization of the equilibrium points, a weak form of Lyapunov stability, and uniqueness of the equilibrium points. The provided experimental studies showcase the overall properties and applicability in different scenarios.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2024.3372802</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Circulation ; Collision avoidance ; Equilibrium ; Lyapunov methods ; Motion control ; Navigation ; Optimization ; Potential fields ; Quadratic programming ; quadratic programming (QP) ; Robot control ; Safety</subject><ispartof>IEEE transactions on control systems technology, 2024-07, Vol.32 (4), p.1426-1441</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-7b25069a679da526253f40ad36aa991313b21d18a73c998a4ccf2738beebad793</cites><orcidid>0000-0002-9730-6190 ; 0000-0003-3709-2810 ; 0000-0002-8418-004X ; 0000-0001-8264-7972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10472718$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Goncalves, Vinicius Mariano</creatorcontrib><creatorcontrib>Krishnamurthy, Prashanth</creatorcontrib><creatorcontrib>Tzes, Anthony</creatorcontrib><creatorcontrib>Khorrami, Farshad</creatorcontrib><title>Control Barrier Functions With Circulation Inequalities</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>Control barrier functions (CBFs) when paired with quadratic programming (QP) offer an increasingly popular framework for control considering critical safety constraints. However, being closely related to artificial potential fields, they suffer from the classical stable spurious equilibrium point problem, in which the controller can fail to drive the system to the goal. The main contribution of this article is showing that this problem can be mitigated by introducing a circulation inequality as a constraint, which forces the system to explicitly circulate obstacles under some conditions. This circulation is introduced in the configuration space and is simple to implement once we have the CBF-constraint, adding a negligible complexity to the resulting optimization problem. Theoretical guarantees are provided for this framework, indicating, under appropriate conditions, the feasibility of the resulting optimization problem, continuity of the control input, characterization of the equilibrium points, a weak form of Lyapunov stability, and uniqueness of the equilibrium points. The provided experimental studies showcase the overall properties and applicability in different scenarios.</description><subject>Circulation</subject><subject>Collision avoidance</subject><subject>Equilibrium</subject><subject>Lyapunov methods</subject><subject>Motion control</subject><subject>Navigation</subject><subject>Optimization</subject><subject>Potential fields</subject><subject>Quadratic programming</subject><subject>quadratic programming (QP)</subject><subject>Robot control</subject><subject>Safety</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LxDAQhoMouH78AMFDwXPXZKb5OmpxdWHBgyseQ5qmmKW2u0l78N_bsnvwNC_D887AQ8gdo0vGqH7clh_bJVAologSFIUzsmCcq5wqwc-nTAXmgqO4JFcp7ShlBQe5ILLsuyH2bfZsYww-Zquxc0Pou5R9heE7K0N0Y2vnTbbu_GG0bRiCTzfkorFt8reneU0-Vy_b8i3fvL-uy6dN7qAQQy4r4FRoK6SuLQcBHJuC2hqFtVozZFgBq5myEp3WyhbONSBRVd5XtpYar8nD8e4-9ofRp8Hs-jF200uDVAKCFJxNFDtSLvYpRd-YfQw_Nv4aRs3sx8x-zOzHnPxMnftjJ3jv__GFBMkU_gHip2CN</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Goncalves, Vinicius Mariano</creator><creator>Krishnamurthy, Prashanth</creator><creator>Tzes, Anthony</creator><creator>Khorrami, Farshad</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9730-6190</orcidid><orcidid>https://orcid.org/0000-0003-3709-2810</orcidid><orcidid>https://orcid.org/0000-0002-8418-004X</orcidid><orcidid>https://orcid.org/0000-0001-8264-7972</orcidid></search><sort><creationdate>20240701</creationdate><title>Control Barrier Functions With Circulation Inequalities</title><author>Goncalves, Vinicius Mariano ; Krishnamurthy, Prashanth ; Tzes, Anthony ; Khorrami, Farshad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-7b25069a679da526253f40ad36aa991313b21d18a73c998a4ccf2738beebad793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Circulation</topic><topic>Collision avoidance</topic><topic>Equilibrium</topic><topic>Lyapunov methods</topic><topic>Motion control</topic><topic>Navigation</topic><topic>Optimization</topic><topic>Potential fields</topic><topic>Quadratic programming</topic><topic>quadratic programming (QP)</topic><topic>Robot control</topic><topic>Safety</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goncalves, Vinicius Mariano</creatorcontrib><creatorcontrib>Krishnamurthy, Prashanth</creatorcontrib><creatorcontrib>Tzes, Anthony</creatorcontrib><creatorcontrib>Khorrami, Farshad</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goncalves, Vinicius Mariano</au><au>Krishnamurthy, Prashanth</au><au>Tzes, Anthony</au><au>Khorrami, Farshad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control Barrier Functions With Circulation Inequalities</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>32</volume><issue>4</issue><spage>1426</spage><epage>1441</epage><pages>1426-1441</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>Control barrier functions (CBFs) when paired with quadratic programming (QP) offer an increasingly popular framework for control considering critical safety constraints. However, being closely related to artificial potential fields, they suffer from the classical stable spurious equilibrium point problem, in which the controller can fail to drive the system to the goal. The main contribution of this article is showing that this problem can be mitigated by introducing a circulation inequality as a constraint, which forces the system to explicitly circulate obstacles under some conditions. This circulation is introduced in the configuration space and is simple to implement once we have the CBF-constraint, adding a negligible complexity to the resulting optimization problem. Theoretical guarantees are provided for this framework, indicating, under appropriate conditions, the feasibility of the resulting optimization problem, continuity of the control input, characterization of the equilibrium points, a weak form of Lyapunov stability, and uniqueness of the equilibrium points. The provided experimental studies showcase the overall properties and applicability in different scenarios.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2024.3372802</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9730-6190</orcidid><orcidid>https://orcid.org/0000-0003-3709-2810</orcidid><orcidid>https://orcid.org/0000-0002-8418-004X</orcidid><orcidid>https://orcid.org/0000-0001-8264-7972</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2024-07, Vol.32 (4), p.1426-1441
issn 1063-6536
1558-0865
language eng
recordid cdi_proquest_journals_3072327651
source IEEE Electronic Library (IEL) Journals
subjects Circulation
Collision avoidance
Equilibrium
Lyapunov methods
Motion control
Navigation
Optimization
Potential fields
Quadratic programming
quadratic programming (QP)
Robot control
Safety
title Control Barrier Functions With Circulation Inequalities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A47%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20Barrier%20Functions%20With%20Circulation%20Inequalities&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Goncalves,%20Vinicius%20Mariano&rft.date=2024-07-01&rft.volume=32&rft.issue=4&rft.spage=1426&rft.epage=1441&rft.pages=1426-1441&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2024.3372802&rft_dat=%3Cproquest_cross%3E3072327651%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-7b25069a679da526253f40ad36aa991313b21d18a73c998a4ccf2738beebad793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3072327651&rft_id=info:pmid/&rft_ieee_id=10472718&rfr_iscdi=true