Loading…

The Detection of Railheads: An Innovative Direct Image Processing Method

This study presents a fully automated railhead detection method based on a direct image processing algorithm for use on a railway track. This method functions at a much faster pace than artificial intelligence algorithms that process rail images on embedded systems or low-power devices, as it does n...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability 2024-06, Vol.16 (12), p.5109
Main Authors: Tverdomed, Volodymyr, Dmytro, Zhuk, Kokriatska, Natalia, Lukoševičius, Vaidas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c257t-83e3afe23abf4a358eba371321a2bc57819eb8913951460852fb602a1f1fa1d83
container_end_page
container_issue 12
container_start_page 5109
container_title Sustainability
container_volume 16
creator Tverdomed, Volodymyr
Dmytro, Zhuk
Kokriatska, Natalia
Lukoševičius, Vaidas
description This study presents a fully automated railhead detection method based on a direct image processing algorithm for use on a railway track. This method functions at a much faster pace than artificial intelligence algorithms that process rail images on embedded systems or low-power devices, as it does not require the use of significant computing resources. With the use of this method, railheads can be analyzed to identify the presence of cracks and other defects. We converted color images to halftone images, performed histogram equalizations to improve the contrast, applied a Gaussian filter to reduce the presence of noise, utilized convolutional filters to extract any vertical and horizontal lines, applied the Canny method and Sobel filters to refine the boundaries of the extracted lines, applied the Hough transform technique to extract lines belonging to the railhead images, and identified the segments with the highest brightness values to process the images of the railheads under study. The method of railhead separation described in this article will allow for further comprehensive diagnostics of the condition of rail threads to ensure the safe and sustainable operation of railway transport. The implementation of intelligent maintenance systems and effective monitoring of railway track conditions can reduce the negative impact on the environment and contribute to the advancement of rail transport as a sustainable, safe, and more environmentally friendly mode of transportation.
doi_str_mv 10.3390/su16125109
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3072720272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A799651932</galeid><sourcerecordid>A799651932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-83e3afe23abf4a358eba371321a2bc57819eb8913951460852fb602a1f1fa1d83</originalsourceid><addsrcrecordid>eNpVkU1LAzEQhoMoWGov_oIFTwqtmaT7EW-lfnRBUWo9L9ndyTal3dQkW_Tfm1JBO8Mww_C8M4eXkEugI84FvXUdJMBioOKE9BhNYQg0pqf_5nMycG5FQ3AOApIemS2WGN2jx8pr00ZGRXOp10uUtbuLJm2Ut63ZSa93gdI2UFG-kQ1Gb9ZU6Jxum-gF_dLUF-RMybXDwW_vk4_Hh8V0Nnx-fcqnk-dhxeLUDzOOXCpkXJZqLHmcYSl5CpyBZGUVpxkILDMBXMQwTmgWM1UmlElQoCTUGe-Tq8PdrTWfHTpfrExn2_Cy4DRlKaOhAjU6UI1cY6FbZbyVVcgaN7oyLSod9pNUiCQGwfeC6yNBYDx--UZ2zhX5-_yYvTmwlTXOWVTF1uqNtN8F0GLvRPHnBP8B0fF3uQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072720272</pqid></control><display><type>article</type><title>The Detection of Railheads: An Innovative Direct Image Processing Method</title><source>Publicly Available Content Database</source><creator>Tverdomed, Volodymyr ; Dmytro, Zhuk ; Kokriatska, Natalia ; Lukoševičius, Vaidas</creator><creatorcontrib>Tverdomed, Volodymyr ; Dmytro, Zhuk ; Kokriatska, Natalia ; Lukoševičius, Vaidas</creatorcontrib><description>This study presents a fully automated railhead detection method based on a direct image processing algorithm for use on a railway track. This method functions at a much faster pace than artificial intelligence algorithms that process rail images on embedded systems or low-power devices, as it does not require the use of significant computing resources. With the use of this method, railheads can be analyzed to identify the presence of cracks and other defects. We converted color images to halftone images, performed histogram equalizations to improve the contrast, applied a Gaussian filter to reduce the presence of noise, utilized convolutional filters to extract any vertical and horizontal lines, applied the Canny method and Sobel filters to refine the boundaries of the extracted lines, applied the Hough transform technique to extract lines belonging to the railhead images, and identified the segments with the highest brightness values to process the images of the railheads under study. The method of railhead separation described in this article will allow for further comprehensive diagnostics of the condition of rail threads to ensure the safe and sustainable operation of railway transport. The implementation of intelligent maintenance systems and effective monitoring of railway track conditions can reduce the negative impact on the environment and contribute to the advancement of rail transport as a sustainable, safe, and more environmentally friendly mode of transportation.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su16125109</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Automation ; Defects ; Electromagnetism ; Embedded systems ; Equipment and supplies ; Image processing ; Machine learning ; Methods ; Noise control ; Railroads ; Railway networks ; Sensors</subject><ispartof>Sustainability, 2024-06, Vol.16 (12), p.5109</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c257t-83e3afe23abf4a358eba371321a2bc57819eb8913951460852fb602a1f1fa1d83</cites><orcidid>0000-0002-5952-1594 ; 0000-0002-0695-1304 ; 0000-0001-8025-8172 ; 0000-0001-8951-5542</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3072720272/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3072720272?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Tverdomed, Volodymyr</creatorcontrib><creatorcontrib>Dmytro, Zhuk</creatorcontrib><creatorcontrib>Kokriatska, Natalia</creatorcontrib><creatorcontrib>Lukoševičius, Vaidas</creatorcontrib><title>The Detection of Railheads: An Innovative Direct Image Processing Method</title><title>Sustainability</title><description>This study presents a fully automated railhead detection method based on a direct image processing algorithm for use on a railway track. This method functions at a much faster pace than artificial intelligence algorithms that process rail images on embedded systems or low-power devices, as it does not require the use of significant computing resources. With the use of this method, railheads can be analyzed to identify the presence of cracks and other defects. We converted color images to halftone images, performed histogram equalizations to improve the contrast, applied a Gaussian filter to reduce the presence of noise, utilized convolutional filters to extract any vertical and horizontal lines, applied the Canny method and Sobel filters to refine the boundaries of the extracted lines, applied the Hough transform technique to extract lines belonging to the railhead images, and identified the segments with the highest brightness values to process the images of the railheads under study. The method of railhead separation described in this article will allow for further comprehensive diagnostics of the condition of rail threads to ensure the safe and sustainable operation of railway transport. The implementation of intelligent maintenance systems and effective monitoring of railway track conditions can reduce the negative impact on the environment and contribute to the advancement of rail transport as a sustainable, safe, and more environmentally friendly mode of transportation.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Defects</subject><subject>Electromagnetism</subject><subject>Embedded systems</subject><subject>Equipment and supplies</subject><subject>Image processing</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Noise control</subject><subject>Railroads</subject><subject>Railway networks</subject><subject>Sensors</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpVkU1LAzEQhoMoWGov_oIFTwqtmaT7EW-lfnRBUWo9L9ndyTal3dQkW_Tfm1JBO8Mww_C8M4eXkEugI84FvXUdJMBioOKE9BhNYQg0pqf_5nMycG5FQ3AOApIemS2WGN2jx8pr00ZGRXOp10uUtbuLJm2Ut63ZSa93gdI2UFG-kQ1Gb9ZU6Jxum-gF_dLUF-RMybXDwW_vk4_Hh8V0Nnx-fcqnk-dhxeLUDzOOXCpkXJZqLHmcYSl5CpyBZGUVpxkILDMBXMQwTmgWM1UmlElQoCTUGe-Tq8PdrTWfHTpfrExn2_Cy4DRlKaOhAjU6UI1cY6FbZbyVVcgaN7oyLSod9pNUiCQGwfeC6yNBYDx--UZ2zhX5-_yYvTmwlTXOWVTF1uqNtN8F0GLvRPHnBP8B0fF3uQ</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Tverdomed, Volodymyr</creator><creator>Dmytro, Zhuk</creator><creator>Kokriatska, Natalia</creator><creator>Lukoševičius, Vaidas</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-5952-1594</orcidid><orcidid>https://orcid.org/0000-0002-0695-1304</orcidid><orcidid>https://orcid.org/0000-0001-8025-8172</orcidid><orcidid>https://orcid.org/0000-0001-8951-5542</orcidid></search><sort><creationdate>20240601</creationdate><title>The Detection of Railheads: An Innovative Direct Image Processing Method</title><author>Tverdomed, Volodymyr ; Dmytro, Zhuk ; Kokriatska, Natalia ; Lukoševičius, Vaidas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-83e3afe23abf4a358eba371321a2bc57819eb8913951460852fb602a1f1fa1d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Defects</topic><topic>Electromagnetism</topic><topic>Embedded systems</topic><topic>Equipment and supplies</topic><topic>Image processing</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Noise control</topic><topic>Railroads</topic><topic>Railway networks</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tverdomed, Volodymyr</creatorcontrib><creatorcontrib>Dmytro, Zhuk</creatorcontrib><creatorcontrib>Kokriatska, Natalia</creatorcontrib><creatorcontrib>Lukoševičius, Vaidas</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tverdomed, Volodymyr</au><au>Dmytro, Zhuk</au><au>Kokriatska, Natalia</au><au>Lukoševičius, Vaidas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Detection of Railheads: An Innovative Direct Image Processing Method</atitle><jtitle>Sustainability</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>16</volume><issue>12</issue><spage>5109</spage><pages>5109-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>This study presents a fully automated railhead detection method based on a direct image processing algorithm for use on a railway track. This method functions at a much faster pace than artificial intelligence algorithms that process rail images on embedded systems or low-power devices, as it does not require the use of significant computing resources. With the use of this method, railheads can be analyzed to identify the presence of cracks and other defects. We converted color images to halftone images, performed histogram equalizations to improve the contrast, applied a Gaussian filter to reduce the presence of noise, utilized convolutional filters to extract any vertical and horizontal lines, applied the Canny method and Sobel filters to refine the boundaries of the extracted lines, applied the Hough transform technique to extract lines belonging to the railhead images, and identified the segments with the highest brightness values to process the images of the railheads under study. The method of railhead separation described in this article will allow for further comprehensive diagnostics of the condition of rail threads to ensure the safe and sustainable operation of railway transport. The implementation of intelligent maintenance systems and effective monitoring of railway track conditions can reduce the negative impact on the environment and contribute to the advancement of rail transport as a sustainable, safe, and more environmentally friendly mode of transportation.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su16125109</doi><orcidid>https://orcid.org/0000-0002-5952-1594</orcidid><orcidid>https://orcid.org/0000-0002-0695-1304</orcidid><orcidid>https://orcid.org/0000-0001-8025-8172</orcidid><orcidid>https://orcid.org/0000-0001-8951-5542</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2024-06, Vol.16 (12), p.5109
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_3072720272
source Publicly Available Content Database
subjects Algorithms
Artificial intelligence
Automation
Defects
Electromagnetism
Embedded systems
Equipment and supplies
Image processing
Machine learning
Methods
Noise control
Railroads
Railway networks
Sensors
title The Detection of Railheads: An Innovative Direct Image Processing Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A04%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Detection%20of%20Railheads:%20An%20Innovative%20Direct%20Image%20Processing%20Method&rft.jtitle=Sustainability&rft.au=Tverdomed,%20Volodymyr&rft.date=2024-06-01&rft.volume=16&rft.issue=12&rft.spage=5109&rft.pages=5109-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su16125109&rft_dat=%3Cgale_proqu%3EA799651932%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c257t-83e3afe23abf4a358eba371321a2bc57819eb8913951460852fb602a1f1fa1d83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3072720272&rft_id=info:pmid/&rft_galeid=A799651932&rfr_iscdi=true