Loading…
The Detection of Railheads: An Innovative Direct Image Processing Method
This study presents a fully automated railhead detection method based on a direct image processing algorithm for use on a railway track. This method functions at a much faster pace than artificial intelligence algorithms that process rail images on embedded systems or low-power devices, as it does n...
Saved in:
Published in: | Sustainability 2024-06, Vol.16 (12), p.5109 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c257t-83e3afe23abf4a358eba371321a2bc57819eb8913951460852fb602a1f1fa1d83 |
container_end_page | |
container_issue | 12 |
container_start_page | 5109 |
container_title | Sustainability |
container_volume | 16 |
creator | Tverdomed, Volodymyr Dmytro, Zhuk Kokriatska, Natalia Lukoševičius, Vaidas |
description | This study presents a fully automated railhead detection method based on a direct image processing algorithm for use on a railway track. This method functions at a much faster pace than artificial intelligence algorithms that process rail images on embedded systems or low-power devices, as it does not require the use of significant computing resources. With the use of this method, railheads can be analyzed to identify the presence of cracks and other defects. We converted color images to halftone images, performed histogram equalizations to improve the contrast, applied a Gaussian filter to reduce the presence of noise, utilized convolutional filters to extract any vertical and horizontal lines, applied the Canny method and Sobel filters to refine the boundaries of the extracted lines, applied the Hough transform technique to extract lines belonging to the railhead images, and identified the segments with the highest brightness values to process the images of the railheads under study. The method of railhead separation described in this article will allow for further comprehensive diagnostics of the condition of rail threads to ensure the safe and sustainable operation of railway transport. The implementation of intelligent maintenance systems and effective monitoring of railway track conditions can reduce the negative impact on the environment and contribute to the advancement of rail transport as a sustainable, safe, and more environmentally friendly mode of transportation. |
doi_str_mv | 10.3390/su16125109 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3072720272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A799651932</galeid><sourcerecordid>A799651932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-83e3afe23abf4a358eba371321a2bc57819eb8913951460852fb602a1f1fa1d83</originalsourceid><addsrcrecordid>eNpVkU1LAzEQhoMoWGov_oIFTwqtmaT7EW-lfnRBUWo9L9ndyTal3dQkW_Tfm1JBO8Mww_C8M4eXkEugI84FvXUdJMBioOKE9BhNYQg0pqf_5nMycG5FQ3AOApIemS2WGN2jx8pr00ZGRXOp10uUtbuLJm2Ut63ZSa93gdI2UFG-kQ1Gb9ZU6Jxum-gF_dLUF-RMybXDwW_vk4_Hh8V0Nnx-fcqnk-dhxeLUDzOOXCpkXJZqLHmcYSl5CpyBZGUVpxkILDMBXMQwTmgWM1UmlElQoCTUGe-Tq8PdrTWfHTpfrExn2_Cy4DRlKaOhAjU6UI1cY6FbZbyVVcgaN7oyLSod9pNUiCQGwfeC6yNBYDx--UZ2zhX5-_yYvTmwlTXOWVTF1uqNtN8F0GLvRPHnBP8B0fF3uQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072720272</pqid></control><display><type>article</type><title>The Detection of Railheads: An Innovative Direct Image Processing Method</title><source>Publicly Available Content Database</source><creator>Tverdomed, Volodymyr ; Dmytro, Zhuk ; Kokriatska, Natalia ; Lukoševičius, Vaidas</creator><creatorcontrib>Tverdomed, Volodymyr ; Dmytro, Zhuk ; Kokriatska, Natalia ; Lukoševičius, Vaidas</creatorcontrib><description>This study presents a fully automated railhead detection method based on a direct image processing algorithm for use on a railway track. This method functions at a much faster pace than artificial intelligence algorithms that process rail images on embedded systems or low-power devices, as it does not require the use of significant computing resources. With the use of this method, railheads can be analyzed to identify the presence of cracks and other defects. We converted color images to halftone images, performed histogram equalizations to improve the contrast, applied a Gaussian filter to reduce the presence of noise, utilized convolutional filters to extract any vertical and horizontal lines, applied the Canny method and Sobel filters to refine the boundaries of the extracted lines, applied the Hough transform technique to extract lines belonging to the railhead images, and identified the segments with the highest brightness values to process the images of the railheads under study. The method of railhead separation described in this article will allow for further comprehensive diagnostics of the condition of rail threads to ensure the safe and sustainable operation of railway transport. The implementation of intelligent maintenance systems and effective monitoring of railway track conditions can reduce the negative impact on the environment and contribute to the advancement of rail transport as a sustainable, safe, and more environmentally friendly mode of transportation.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su16125109</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Automation ; Defects ; Electromagnetism ; Embedded systems ; Equipment and supplies ; Image processing ; Machine learning ; Methods ; Noise control ; Railroads ; Railway networks ; Sensors</subject><ispartof>Sustainability, 2024-06, Vol.16 (12), p.5109</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c257t-83e3afe23abf4a358eba371321a2bc57819eb8913951460852fb602a1f1fa1d83</cites><orcidid>0000-0002-5952-1594 ; 0000-0002-0695-1304 ; 0000-0001-8025-8172 ; 0000-0001-8951-5542</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3072720272/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3072720272?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Tverdomed, Volodymyr</creatorcontrib><creatorcontrib>Dmytro, Zhuk</creatorcontrib><creatorcontrib>Kokriatska, Natalia</creatorcontrib><creatorcontrib>Lukoševičius, Vaidas</creatorcontrib><title>The Detection of Railheads: An Innovative Direct Image Processing Method</title><title>Sustainability</title><description>This study presents a fully automated railhead detection method based on a direct image processing algorithm for use on a railway track. This method functions at a much faster pace than artificial intelligence algorithms that process rail images on embedded systems or low-power devices, as it does not require the use of significant computing resources. With the use of this method, railheads can be analyzed to identify the presence of cracks and other defects. We converted color images to halftone images, performed histogram equalizations to improve the contrast, applied a Gaussian filter to reduce the presence of noise, utilized convolutional filters to extract any vertical and horizontal lines, applied the Canny method and Sobel filters to refine the boundaries of the extracted lines, applied the Hough transform technique to extract lines belonging to the railhead images, and identified the segments with the highest brightness values to process the images of the railheads under study. The method of railhead separation described in this article will allow for further comprehensive diagnostics of the condition of rail threads to ensure the safe and sustainable operation of railway transport. The implementation of intelligent maintenance systems and effective monitoring of railway track conditions can reduce the negative impact on the environment and contribute to the advancement of rail transport as a sustainable, safe, and more environmentally friendly mode of transportation.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Defects</subject><subject>Electromagnetism</subject><subject>Embedded systems</subject><subject>Equipment and supplies</subject><subject>Image processing</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Noise control</subject><subject>Railroads</subject><subject>Railway networks</subject><subject>Sensors</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpVkU1LAzEQhoMoWGov_oIFTwqtmaT7EW-lfnRBUWo9L9ndyTal3dQkW_Tfm1JBO8Mww_C8M4eXkEugI84FvXUdJMBioOKE9BhNYQg0pqf_5nMycG5FQ3AOApIemS2WGN2jx8pr00ZGRXOp10uUtbuLJm2Ut63ZSa93gdI2UFG-kQ1Gb9ZU6Jxum-gF_dLUF-RMybXDwW_vk4_Hh8V0Nnx-fcqnk-dhxeLUDzOOXCpkXJZqLHmcYSl5CpyBZGUVpxkILDMBXMQwTmgWM1UmlElQoCTUGe-Tq8PdrTWfHTpfrExn2_Cy4DRlKaOhAjU6UI1cY6FbZbyVVcgaN7oyLSod9pNUiCQGwfeC6yNBYDx--UZ2zhX5-_yYvTmwlTXOWVTF1uqNtN8F0GLvRPHnBP8B0fF3uQ</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Tverdomed, Volodymyr</creator><creator>Dmytro, Zhuk</creator><creator>Kokriatska, Natalia</creator><creator>Lukoševičius, Vaidas</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-5952-1594</orcidid><orcidid>https://orcid.org/0000-0002-0695-1304</orcidid><orcidid>https://orcid.org/0000-0001-8025-8172</orcidid><orcidid>https://orcid.org/0000-0001-8951-5542</orcidid></search><sort><creationdate>20240601</creationdate><title>The Detection of Railheads: An Innovative Direct Image Processing Method</title><author>Tverdomed, Volodymyr ; Dmytro, Zhuk ; Kokriatska, Natalia ; Lukoševičius, Vaidas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-83e3afe23abf4a358eba371321a2bc57819eb8913951460852fb602a1f1fa1d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Defects</topic><topic>Electromagnetism</topic><topic>Embedded systems</topic><topic>Equipment and supplies</topic><topic>Image processing</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Noise control</topic><topic>Railroads</topic><topic>Railway networks</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tverdomed, Volodymyr</creatorcontrib><creatorcontrib>Dmytro, Zhuk</creatorcontrib><creatorcontrib>Kokriatska, Natalia</creatorcontrib><creatorcontrib>Lukoševičius, Vaidas</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tverdomed, Volodymyr</au><au>Dmytro, Zhuk</au><au>Kokriatska, Natalia</au><au>Lukoševičius, Vaidas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Detection of Railheads: An Innovative Direct Image Processing Method</atitle><jtitle>Sustainability</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>16</volume><issue>12</issue><spage>5109</spage><pages>5109-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>This study presents a fully automated railhead detection method based on a direct image processing algorithm for use on a railway track. This method functions at a much faster pace than artificial intelligence algorithms that process rail images on embedded systems or low-power devices, as it does not require the use of significant computing resources. With the use of this method, railheads can be analyzed to identify the presence of cracks and other defects. We converted color images to halftone images, performed histogram equalizations to improve the contrast, applied a Gaussian filter to reduce the presence of noise, utilized convolutional filters to extract any vertical and horizontal lines, applied the Canny method and Sobel filters to refine the boundaries of the extracted lines, applied the Hough transform technique to extract lines belonging to the railhead images, and identified the segments with the highest brightness values to process the images of the railheads under study. The method of railhead separation described in this article will allow for further comprehensive diagnostics of the condition of rail threads to ensure the safe and sustainable operation of railway transport. The implementation of intelligent maintenance systems and effective monitoring of railway track conditions can reduce the negative impact on the environment and contribute to the advancement of rail transport as a sustainable, safe, and more environmentally friendly mode of transportation.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su16125109</doi><orcidid>https://orcid.org/0000-0002-5952-1594</orcidid><orcidid>https://orcid.org/0000-0002-0695-1304</orcidid><orcidid>https://orcid.org/0000-0001-8025-8172</orcidid><orcidid>https://orcid.org/0000-0001-8951-5542</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2024-06, Vol.16 (12), p.5109 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_3072720272 |
source | Publicly Available Content Database |
subjects | Algorithms Artificial intelligence Automation Defects Electromagnetism Embedded systems Equipment and supplies Image processing Machine learning Methods Noise control Railroads Railway networks Sensors |
title | The Detection of Railheads: An Innovative Direct Image Processing Method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A04%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Detection%20of%20Railheads:%20An%20Innovative%20Direct%20Image%20Processing%20Method&rft.jtitle=Sustainability&rft.au=Tverdomed,%20Volodymyr&rft.date=2024-06-01&rft.volume=16&rft.issue=12&rft.spage=5109&rft.pages=5109-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su16125109&rft_dat=%3Cgale_proqu%3EA799651932%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c257t-83e3afe23abf4a358eba371321a2bc57819eb8913951460852fb602a1f1fa1d83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3072720272&rft_id=info:pmid/&rft_galeid=A799651932&rfr_iscdi=true |