Loading…
Silanized palygorskite clay as a template for the preparation of polypyrrole-based nanocomposites for supercapacitor electrodes
Polypyrrole (PPy) is considered a promising electrode material for supercapacitors (SCs) due to its high specific capacitance; however, it exhibits low long-term cycling stability. To address this issue, the introduction of nanostructured materials into the PPy matrix yields nanocomposites that exhi...
Saved in:
Published in: | Journal of materials science. Materials in electronics 2024-06, Vol.35 (18), p.1262, Article 1262 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c200t-90b4d4b6664423da42da936a2d18e3f0d66c4bf47dea955aebdf7137d1cb55843 |
container_end_page | |
container_issue | 18 |
container_start_page | 1262 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 35 |
creator | Díaz-Arriaga, Carlos Bellaner Baas-López, José Martin Uribe-Calderón, Jorge Alonso Pacheco-Catalán, Daniella Esperanza |
description | Polypyrrole (PPy) is considered a promising electrode material for supercapacitors (SCs) due to its high specific capacitance; however, it exhibits low long-term cycling stability. To address this issue, the introduction of nanostructured materials into the PPy matrix yields nanocomposites that exhibit enhanced capacitance and improved cycling stability. In this study, PPy/palygorskite (PPy/Pal) nanocomposites were synthesized via in situ chemical polymerization of pyrrole on Pal templates. To enhance the compatibility between PPy and the clay, the surface of Pal was modified with a silane coupling agent (Pal-S). In a half-cell configuration, the PPy/Pal-S electrodes exhibit better electrochemical performance in terms of specific capacitance, rate capability, and cycling stability than the PPy electrode. The PPy/Pal-S nanocomposites achieved a maximum specific capacitance of 218 F g
−1
and retained 91% of their initial capacitance after 500 CV cycles. Moreover, the fabricated symmetric supercapacitor device elaborated with the PPy/Pal-S electrodes delivered a specific capacitance of 15 F g
−1
at 3 mA cm
−2
, an energy density of 0.9 Wh kg
−1
, a power density of 55 W kg
−1
with a cycling stability of 72% after 2000 GCD cycles, in a voltage range of 0.7 V. This study presents a novel strategy for constructing a 1D core/sheath PPy/Pal-S structure, which combines the advantageous properties of PPy (pseudocapacitance and electrical conductivity) and Pal-S clay (mechanical and chemical stability, 1D morphology, mesoporosity, and nanoscale size). Understanding the synergistic effects provides valuable insights for designing electrode materials with superior performance. |
doi_str_mv | 10.1007/s10854-024-12956-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3072917716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072917716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-90b4d4b6664423da42da936a2d18e3f0d66c4bf47dea955aebdf7137d1cb55843</originalsourceid><addsrcrecordid>eNp9kE1rFTEUhkNR6LX1D3QVcB3Nd2aWUtQKBRcqdBfOJGfaqXMnMZm7mLvpX2_sFdy5OpzD-7wHHkKuBH8vOHcfquCd0YxLzYTsjWXHM7ITximmO3n3iux4bxzTRspz8qbWR8651arbkafv0wzLdMRIM8zbfSr117QiDTNsFCoFuuI-z9BOYyp0fUCaC2YosE5poWmkOc1b3kpJM7IBaitaYEkh7XOqram-cPWQsQTIEKa1rThjWEuKWC_J6xHmim__zgvy8_OnH9c37Pbbl6_XH29ZkJyvrOeDjnqw1motVQQtI_TKgoyiQzXyaG3Qw6hdROiNARzi6IRyUYTBmE6rC_Lu1JtL-n3AuvrHdChLe-kVd7IXzgnbUvKUCiXVWnD0uUx7KJsX3P8R7U-ifRPtX0T7Y4PUCaotvNxj-Vf9H-oZdEaFgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072917716</pqid></control><display><type>article</type><title>Silanized palygorskite clay as a template for the preparation of polypyrrole-based nanocomposites for supercapacitor electrodes</title><source>Springer Nature</source><creator>Díaz-Arriaga, Carlos Bellaner ; Baas-López, José Martin ; Uribe-Calderón, Jorge Alonso ; Pacheco-Catalán, Daniella Esperanza</creator><creatorcontrib>Díaz-Arriaga, Carlos Bellaner ; Baas-López, José Martin ; Uribe-Calderón, Jorge Alonso ; Pacheco-Catalán, Daniella Esperanza</creatorcontrib><description>Polypyrrole (PPy) is considered a promising electrode material for supercapacitors (SCs) due to its high specific capacitance; however, it exhibits low long-term cycling stability. To address this issue, the introduction of nanostructured materials into the PPy matrix yields nanocomposites that exhibit enhanced capacitance and improved cycling stability. In this study, PPy/palygorskite (PPy/Pal) nanocomposites were synthesized via in situ chemical polymerization of pyrrole on Pal templates. To enhance the compatibility between PPy and the clay, the surface of Pal was modified with a silane coupling agent (Pal-S). In a half-cell configuration, the PPy/Pal-S electrodes exhibit better electrochemical performance in terms of specific capacitance, rate capability, and cycling stability than the PPy electrode. The PPy/Pal-S nanocomposites achieved a maximum specific capacitance of 218 F g
−1
and retained 91% of their initial capacitance after 500 CV cycles. Moreover, the fabricated symmetric supercapacitor device elaborated with the PPy/Pal-S electrodes delivered a specific capacitance of 15 F g
−1
at 3 mA cm
−2
, an energy density of 0.9 Wh kg
−1
, a power density of 55 W kg
−1
with a cycling stability of 72% after 2000 GCD cycles, in a voltage range of 0.7 V. This study presents a novel strategy for constructing a 1D core/sheath PPy/Pal-S structure, which combines the advantageous properties of PPy (pseudocapacitance and electrical conductivity) and Pal-S clay (mechanical and chemical stability, 1D morphology, mesoporosity, and nanoscale size). Understanding the synergistic effects provides valuable insights for designing electrode materials with superior performance.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-024-12956-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Capacitance ; Characterization and Evaluation of Materials ; Chemical synthesis ; Chemistry and Materials Science ; Clay ; Coupling agents ; Cycles ; Electrical resistivity ; Electrochemical analysis ; Electrode materials ; Electrodes ; Materials Science ; Nanocomposites ; Nanostructured materials ; Optical and Electronic Materials ; Polypyrroles ; Sheaths ; Stability ; Supercapacitors ; Synergistic effect</subject><ispartof>Journal of materials science. Materials in electronics, 2024-06, Vol.35 (18), p.1262, Article 1262</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-90b4d4b6664423da42da936a2d18e3f0d66c4bf47dea955aebdf7137d1cb55843</cites><orcidid>0000-0003-3412-7459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Díaz-Arriaga, Carlos Bellaner</creatorcontrib><creatorcontrib>Baas-López, José Martin</creatorcontrib><creatorcontrib>Uribe-Calderón, Jorge Alonso</creatorcontrib><creatorcontrib>Pacheco-Catalán, Daniella Esperanza</creatorcontrib><title>Silanized palygorskite clay as a template for the preparation of polypyrrole-based nanocomposites for supercapacitor electrodes</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Polypyrrole (PPy) is considered a promising electrode material for supercapacitors (SCs) due to its high specific capacitance; however, it exhibits low long-term cycling stability. To address this issue, the introduction of nanostructured materials into the PPy matrix yields nanocomposites that exhibit enhanced capacitance and improved cycling stability. In this study, PPy/palygorskite (PPy/Pal) nanocomposites were synthesized via in situ chemical polymerization of pyrrole on Pal templates. To enhance the compatibility between PPy and the clay, the surface of Pal was modified with a silane coupling agent (Pal-S). In a half-cell configuration, the PPy/Pal-S electrodes exhibit better electrochemical performance in terms of specific capacitance, rate capability, and cycling stability than the PPy electrode. The PPy/Pal-S nanocomposites achieved a maximum specific capacitance of 218 F g
−1
and retained 91% of their initial capacitance after 500 CV cycles. Moreover, the fabricated symmetric supercapacitor device elaborated with the PPy/Pal-S electrodes delivered a specific capacitance of 15 F g
−1
at 3 mA cm
−2
, an energy density of 0.9 Wh kg
−1
, a power density of 55 W kg
−1
with a cycling stability of 72% after 2000 GCD cycles, in a voltage range of 0.7 V. This study presents a novel strategy for constructing a 1D core/sheath PPy/Pal-S structure, which combines the advantageous properties of PPy (pseudocapacitance and electrical conductivity) and Pal-S clay (mechanical and chemical stability, 1D morphology, mesoporosity, and nanoscale size). Understanding the synergistic effects provides valuable insights for designing electrode materials with superior performance.</description><subject>Capacitance</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Clay</subject><subject>Coupling agents</subject><subject>Cycles</subject><subject>Electrical resistivity</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Materials Science</subject><subject>Nanocomposites</subject><subject>Nanostructured materials</subject><subject>Optical and Electronic Materials</subject><subject>Polypyrroles</subject><subject>Sheaths</subject><subject>Stability</subject><subject>Supercapacitors</subject><subject>Synergistic effect</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rFTEUhkNR6LX1D3QVcB3Nd2aWUtQKBRcqdBfOJGfaqXMnMZm7mLvpX2_sFdy5OpzD-7wHHkKuBH8vOHcfquCd0YxLzYTsjWXHM7ITximmO3n3iux4bxzTRspz8qbWR8651arbkafv0wzLdMRIM8zbfSr117QiDTNsFCoFuuI-z9BOYyp0fUCaC2YosE5poWmkOc1b3kpJM7IBaitaYEkh7XOqram-cPWQsQTIEKa1rThjWEuKWC_J6xHmim__zgvy8_OnH9c37Pbbl6_XH29ZkJyvrOeDjnqw1motVQQtI_TKgoyiQzXyaG3Qw6hdROiNARzi6IRyUYTBmE6rC_Lu1JtL-n3AuvrHdChLe-kVd7IXzgnbUvKUCiXVWnD0uUx7KJsX3P8R7U-ifRPtX0T7Y4PUCaotvNxj-Vf9H-oZdEaFgw</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Díaz-Arriaga, Carlos Bellaner</creator><creator>Baas-López, José Martin</creator><creator>Uribe-Calderón, Jorge Alonso</creator><creator>Pacheco-Catalán, Daniella Esperanza</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3412-7459</orcidid></search><sort><creationdate>20240601</creationdate><title>Silanized palygorskite clay as a template for the preparation of polypyrrole-based nanocomposites for supercapacitor electrodes</title><author>Díaz-Arriaga, Carlos Bellaner ; Baas-López, José Martin ; Uribe-Calderón, Jorge Alonso ; Pacheco-Catalán, Daniella Esperanza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-90b4d4b6664423da42da936a2d18e3f0d66c4bf47dea955aebdf7137d1cb55843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Capacitance</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Clay</topic><topic>Coupling agents</topic><topic>Cycles</topic><topic>Electrical resistivity</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Materials Science</topic><topic>Nanocomposites</topic><topic>Nanostructured materials</topic><topic>Optical and Electronic Materials</topic><topic>Polypyrroles</topic><topic>Sheaths</topic><topic>Stability</topic><topic>Supercapacitors</topic><topic>Synergistic effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Díaz-Arriaga, Carlos Bellaner</creatorcontrib><creatorcontrib>Baas-López, José Martin</creatorcontrib><creatorcontrib>Uribe-Calderón, Jorge Alonso</creatorcontrib><creatorcontrib>Pacheco-Catalán, Daniella Esperanza</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Díaz-Arriaga, Carlos Bellaner</au><au>Baas-López, José Martin</au><au>Uribe-Calderón, Jorge Alonso</au><au>Pacheco-Catalán, Daniella Esperanza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silanized palygorskite clay as a template for the preparation of polypyrrole-based nanocomposites for supercapacitor electrodes</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>35</volume><issue>18</issue><spage>1262</spage><pages>1262-</pages><artnum>1262</artnum><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Polypyrrole (PPy) is considered a promising electrode material for supercapacitors (SCs) due to its high specific capacitance; however, it exhibits low long-term cycling stability. To address this issue, the introduction of nanostructured materials into the PPy matrix yields nanocomposites that exhibit enhanced capacitance and improved cycling stability. In this study, PPy/palygorskite (PPy/Pal) nanocomposites were synthesized via in situ chemical polymerization of pyrrole on Pal templates. To enhance the compatibility between PPy and the clay, the surface of Pal was modified with a silane coupling agent (Pal-S). In a half-cell configuration, the PPy/Pal-S electrodes exhibit better electrochemical performance in terms of specific capacitance, rate capability, and cycling stability than the PPy electrode. The PPy/Pal-S nanocomposites achieved a maximum specific capacitance of 218 F g
−1
and retained 91% of their initial capacitance after 500 CV cycles. Moreover, the fabricated symmetric supercapacitor device elaborated with the PPy/Pal-S electrodes delivered a specific capacitance of 15 F g
−1
at 3 mA cm
−2
, an energy density of 0.9 Wh kg
−1
, a power density of 55 W kg
−1
with a cycling stability of 72% after 2000 GCD cycles, in a voltage range of 0.7 V. This study presents a novel strategy for constructing a 1D core/sheath PPy/Pal-S structure, which combines the advantageous properties of PPy (pseudocapacitance and electrical conductivity) and Pal-S clay (mechanical and chemical stability, 1D morphology, mesoporosity, and nanoscale size). Understanding the synergistic effects provides valuable insights for designing electrode materials with superior performance.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-024-12956-z</doi><orcidid>https://orcid.org/0000-0003-3412-7459</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2024-06, Vol.35 (18), p.1262, Article 1262 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_3072917716 |
source | Springer Nature |
subjects | Capacitance Characterization and Evaluation of Materials Chemical synthesis Chemistry and Materials Science Clay Coupling agents Cycles Electrical resistivity Electrochemical analysis Electrode materials Electrodes Materials Science Nanocomposites Nanostructured materials Optical and Electronic Materials Polypyrroles Sheaths Stability Supercapacitors Synergistic effect |
title | Silanized palygorskite clay as a template for the preparation of polypyrrole-based nanocomposites for supercapacitor electrodes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A59%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silanized%20palygorskite%20clay%20as%20a%20template%20for%20the%20preparation%20of%20polypyrrole-based%20nanocomposites%20for%20supercapacitor%20electrodes&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=D%C3%ADaz-Arriaga,%20Carlos%20Bellaner&rft.date=2024-06-01&rft.volume=35&rft.issue=18&rft.spage=1262&rft.pages=1262-&rft.artnum=1262&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-024-12956-z&rft_dat=%3Cproquest_cross%3E3072917716%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-90b4d4b6664423da42da936a2d18e3f0d66c4bf47dea955aebdf7137d1cb55843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3072917716&rft_id=info:pmid/&rfr_iscdi=true |