Loading…

Silanized palygorskite clay as a template for the preparation of polypyrrole-based nanocomposites for supercapacitor electrodes

Polypyrrole (PPy) is considered a promising electrode material for supercapacitors (SCs) due to its high specific capacitance; however, it exhibits low long-term cycling stability. To address this issue, the introduction of nanostructured materials into the PPy matrix yields nanocomposites that exhi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science. Materials in electronics 2024-06, Vol.35 (18), p.1262, Article 1262
Main Authors: Díaz-Arriaga, Carlos Bellaner, Baas-López, José Martin, Uribe-Calderón, Jorge Alonso, Pacheco-Catalán, Daniella Esperanza
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c200t-90b4d4b6664423da42da936a2d18e3f0d66c4bf47dea955aebdf7137d1cb55843
container_end_page
container_issue 18
container_start_page 1262
container_title Journal of materials science. Materials in electronics
container_volume 35
creator Díaz-Arriaga, Carlos Bellaner
Baas-López, José Martin
Uribe-Calderón, Jorge Alonso
Pacheco-Catalán, Daniella Esperanza
description Polypyrrole (PPy) is considered a promising electrode material for supercapacitors (SCs) due to its high specific capacitance; however, it exhibits low long-term cycling stability. To address this issue, the introduction of nanostructured materials into the PPy matrix yields nanocomposites that exhibit enhanced capacitance and improved cycling stability. In this study, PPy/palygorskite (PPy/Pal) nanocomposites were synthesized via in situ chemical polymerization of pyrrole on Pal templates. To enhance the compatibility between PPy and the clay, the surface of Pal was modified with a silane coupling agent (Pal-S). In a half-cell configuration, the PPy/Pal-S electrodes exhibit better electrochemical performance in terms of specific capacitance, rate capability, and cycling stability than the PPy electrode. The PPy/Pal-S nanocomposites achieved a maximum specific capacitance of 218 F g −1 and retained 91% of their initial capacitance after 500 CV cycles. Moreover, the fabricated symmetric supercapacitor device elaborated with the PPy/Pal-S electrodes delivered a specific capacitance of 15 F g −1 at 3 mA cm −2 , an energy density of 0.9 Wh kg −1 , a power density of 55 W kg −1 with a cycling stability of 72% after 2000 GCD cycles, in a voltage range of 0.7 V. This study presents a novel strategy for constructing a 1D core/sheath PPy/Pal-S structure, which combines the advantageous properties of PPy (pseudocapacitance and electrical conductivity) and Pal-S clay (mechanical and chemical stability, 1D morphology, mesoporosity, and nanoscale size). Understanding the synergistic effects provides valuable insights for designing electrode materials with superior performance.
doi_str_mv 10.1007/s10854-024-12956-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3072917716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072917716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-90b4d4b6664423da42da936a2d18e3f0d66c4bf47dea955aebdf7137d1cb55843</originalsourceid><addsrcrecordid>eNp9kE1rFTEUhkNR6LX1D3QVcB3Nd2aWUtQKBRcqdBfOJGfaqXMnMZm7mLvpX2_sFdy5OpzD-7wHHkKuBH8vOHcfquCd0YxLzYTsjWXHM7ITximmO3n3iux4bxzTRspz8qbWR8651arbkafv0wzLdMRIM8zbfSr117QiDTNsFCoFuuI-z9BOYyp0fUCaC2YosE5poWmkOc1b3kpJM7IBaitaYEkh7XOqram-cPWQsQTIEKa1rThjWEuKWC_J6xHmim__zgvy8_OnH9c37Pbbl6_XH29ZkJyvrOeDjnqw1motVQQtI_TKgoyiQzXyaG3Qw6hdROiNARzi6IRyUYTBmE6rC_Lu1JtL-n3AuvrHdChLe-kVd7IXzgnbUvKUCiXVWnD0uUx7KJsX3P8R7U-ifRPtX0T7Y4PUCaotvNxj-Vf9H-oZdEaFgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072917716</pqid></control><display><type>article</type><title>Silanized palygorskite clay as a template for the preparation of polypyrrole-based nanocomposites for supercapacitor electrodes</title><source>Springer Nature</source><creator>Díaz-Arriaga, Carlos Bellaner ; Baas-López, José Martin ; Uribe-Calderón, Jorge Alonso ; Pacheco-Catalán, Daniella Esperanza</creator><creatorcontrib>Díaz-Arriaga, Carlos Bellaner ; Baas-López, José Martin ; Uribe-Calderón, Jorge Alonso ; Pacheco-Catalán, Daniella Esperanza</creatorcontrib><description>Polypyrrole (PPy) is considered a promising electrode material for supercapacitors (SCs) due to its high specific capacitance; however, it exhibits low long-term cycling stability. To address this issue, the introduction of nanostructured materials into the PPy matrix yields nanocomposites that exhibit enhanced capacitance and improved cycling stability. In this study, PPy/palygorskite (PPy/Pal) nanocomposites were synthesized via in situ chemical polymerization of pyrrole on Pal templates. To enhance the compatibility between PPy and the clay, the surface of Pal was modified with a silane coupling agent (Pal-S). In a half-cell configuration, the PPy/Pal-S electrodes exhibit better electrochemical performance in terms of specific capacitance, rate capability, and cycling stability than the PPy electrode. The PPy/Pal-S nanocomposites achieved a maximum specific capacitance of 218 F g −1 and retained 91% of their initial capacitance after 500 CV cycles. Moreover, the fabricated symmetric supercapacitor device elaborated with the PPy/Pal-S electrodes delivered a specific capacitance of 15 F g −1 at 3 mA cm −2 , an energy density of 0.9 Wh kg −1 , a power density of 55 W kg −1 with a cycling stability of 72% after 2000 GCD cycles, in a voltage range of 0.7 V. This study presents a novel strategy for constructing a 1D core/sheath PPy/Pal-S structure, which combines the advantageous properties of PPy (pseudocapacitance and electrical conductivity) and Pal-S clay (mechanical and chemical stability, 1D morphology, mesoporosity, and nanoscale size). Understanding the synergistic effects provides valuable insights for designing electrode materials with superior performance.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-024-12956-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Capacitance ; Characterization and Evaluation of Materials ; Chemical synthesis ; Chemistry and Materials Science ; Clay ; Coupling agents ; Cycles ; Electrical resistivity ; Electrochemical analysis ; Electrode materials ; Electrodes ; Materials Science ; Nanocomposites ; Nanostructured materials ; Optical and Electronic Materials ; Polypyrroles ; Sheaths ; Stability ; Supercapacitors ; Synergistic effect</subject><ispartof>Journal of materials science. Materials in electronics, 2024-06, Vol.35 (18), p.1262, Article 1262</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-90b4d4b6664423da42da936a2d18e3f0d66c4bf47dea955aebdf7137d1cb55843</cites><orcidid>0000-0003-3412-7459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Díaz-Arriaga, Carlos Bellaner</creatorcontrib><creatorcontrib>Baas-López, José Martin</creatorcontrib><creatorcontrib>Uribe-Calderón, Jorge Alonso</creatorcontrib><creatorcontrib>Pacheco-Catalán, Daniella Esperanza</creatorcontrib><title>Silanized palygorskite clay as a template for the preparation of polypyrrole-based nanocomposites for supercapacitor electrodes</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Polypyrrole (PPy) is considered a promising electrode material for supercapacitors (SCs) due to its high specific capacitance; however, it exhibits low long-term cycling stability. To address this issue, the introduction of nanostructured materials into the PPy matrix yields nanocomposites that exhibit enhanced capacitance and improved cycling stability. In this study, PPy/palygorskite (PPy/Pal) nanocomposites were synthesized via in situ chemical polymerization of pyrrole on Pal templates. To enhance the compatibility between PPy and the clay, the surface of Pal was modified with a silane coupling agent (Pal-S). In a half-cell configuration, the PPy/Pal-S electrodes exhibit better electrochemical performance in terms of specific capacitance, rate capability, and cycling stability than the PPy electrode. The PPy/Pal-S nanocomposites achieved a maximum specific capacitance of 218 F g −1 and retained 91% of their initial capacitance after 500 CV cycles. Moreover, the fabricated symmetric supercapacitor device elaborated with the PPy/Pal-S electrodes delivered a specific capacitance of 15 F g −1 at 3 mA cm −2 , an energy density of 0.9 Wh kg −1 , a power density of 55 W kg −1 with a cycling stability of 72% after 2000 GCD cycles, in a voltage range of 0.7 V. This study presents a novel strategy for constructing a 1D core/sheath PPy/Pal-S structure, which combines the advantageous properties of PPy (pseudocapacitance and electrical conductivity) and Pal-S clay (mechanical and chemical stability, 1D morphology, mesoporosity, and nanoscale size). Understanding the synergistic effects provides valuable insights for designing electrode materials with superior performance.</description><subject>Capacitance</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Clay</subject><subject>Coupling agents</subject><subject>Cycles</subject><subject>Electrical resistivity</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Materials Science</subject><subject>Nanocomposites</subject><subject>Nanostructured materials</subject><subject>Optical and Electronic Materials</subject><subject>Polypyrroles</subject><subject>Sheaths</subject><subject>Stability</subject><subject>Supercapacitors</subject><subject>Synergistic effect</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rFTEUhkNR6LX1D3QVcB3Nd2aWUtQKBRcqdBfOJGfaqXMnMZm7mLvpX2_sFdy5OpzD-7wHHkKuBH8vOHcfquCd0YxLzYTsjWXHM7ITximmO3n3iux4bxzTRspz8qbWR8651arbkafv0wzLdMRIM8zbfSr117QiDTNsFCoFuuI-z9BOYyp0fUCaC2YosE5poWmkOc1b3kpJM7IBaitaYEkh7XOqram-cPWQsQTIEKa1rThjWEuKWC_J6xHmim__zgvy8_OnH9c37Pbbl6_XH29ZkJyvrOeDjnqw1motVQQtI_TKgoyiQzXyaG3Qw6hdROiNARzi6IRyUYTBmE6rC_Lu1JtL-n3AuvrHdChLe-kVd7IXzgnbUvKUCiXVWnD0uUx7KJsX3P8R7U-ifRPtX0T7Y4PUCaotvNxj-Vf9H-oZdEaFgw</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Díaz-Arriaga, Carlos Bellaner</creator><creator>Baas-López, José Martin</creator><creator>Uribe-Calderón, Jorge Alonso</creator><creator>Pacheco-Catalán, Daniella Esperanza</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3412-7459</orcidid></search><sort><creationdate>20240601</creationdate><title>Silanized palygorskite clay as a template for the preparation of polypyrrole-based nanocomposites for supercapacitor electrodes</title><author>Díaz-Arriaga, Carlos Bellaner ; Baas-López, José Martin ; Uribe-Calderón, Jorge Alonso ; Pacheco-Catalán, Daniella Esperanza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-90b4d4b6664423da42da936a2d18e3f0d66c4bf47dea955aebdf7137d1cb55843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Capacitance</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Clay</topic><topic>Coupling agents</topic><topic>Cycles</topic><topic>Electrical resistivity</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Materials Science</topic><topic>Nanocomposites</topic><topic>Nanostructured materials</topic><topic>Optical and Electronic Materials</topic><topic>Polypyrroles</topic><topic>Sheaths</topic><topic>Stability</topic><topic>Supercapacitors</topic><topic>Synergistic effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Díaz-Arriaga, Carlos Bellaner</creatorcontrib><creatorcontrib>Baas-López, José Martin</creatorcontrib><creatorcontrib>Uribe-Calderón, Jorge Alonso</creatorcontrib><creatorcontrib>Pacheco-Catalán, Daniella Esperanza</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Díaz-Arriaga, Carlos Bellaner</au><au>Baas-López, José Martin</au><au>Uribe-Calderón, Jorge Alonso</au><au>Pacheco-Catalán, Daniella Esperanza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silanized palygorskite clay as a template for the preparation of polypyrrole-based nanocomposites for supercapacitor electrodes</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>35</volume><issue>18</issue><spage>1262</spage><pages>1262-</pages><artnum>1262</artnum><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Polypyrrole (PPy) is considered a promising electrode material for supercapacitors (SCs) due to its high specific capacitance; however, it exhibits low long-term cycling stability. To address this issue, the introduction of nanostructured materials into the PPy matrix yields nanocomposites that exhibit enhanced capacitance and improved cycling stability. In this study, PPy/palygorskite (PPy/Pal) nanocomposites were synthesized via in situ chemical polymerization of pyrrole on Pal templates. To enhance the compatibility between PPy and the clay, the surface of Pal was modified with a silane coupling agent (Pal-S). In a half-cell configuration, the PPy/Pal-S electrodes exhibit better electrochemical performance in terms of specific capacitance, rate capability, and cycling stability than the PPy electrode. The PPy/Pal-S nanocomposites achieved a maximum specific capacitance of 218 F g −1 and retained 91% of their initial capacitance after 500 CV cycles. Moreover, the fabricated symmetric supercapacitor device elaborated with the PPy/Pal-S electrodes delivered a specific capacitance of 15 F g −1 at 3 mA cm −2 , an energy density of 0.9 Wh kg −1 , a power density of 55 W kg −1 with a cycling stability of 72% after 2000 GCD cycles, in a voltage range of 0.7 V. This study presents a novel strategy for constructing a 1D core/sheath PPy/Pal-S structure, which combines the advantageous properties of PPy (pseudocapacitance and electrical conductivity) and Pal-S clay (mechanical and chemical stability, 1D morphology, mesoporosity, and nanoscale size). Understanding the synergistic effects provides valuable insights for designing electrode materials with superior performance.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-024-12956-z</doi><orcidid>https://orcid.org/0000-0003-3412-7459</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2024-06, Vol.35 (18), p.1262, Article 1262
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_3072917716
source Springer Nature
subjects Capacitance
Characterization and Evaluation of Materials
Chemical synthesis
Chemistry and Materials Science
Clay
Coupling agents
Cycles
Electrical resistivity
Electrochemical analysis
Electrode materials
Electrodes
Materials Science
Nanocomposites
Nanostructured materials
Optical and Electronic Materials
Polypyrroles
Sheaths
Stability
Supercapacitors
Synergistic effect
title Silanized palygorskite clay as a template for the preparation of polypyrrole-based nanocomposites for supercapacitor electrodes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A59%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silanized%20palygorskite%20clay%20as%20a%20template%20for%20the%20preparation%20of%20polypyrrole-based%20nanocomposites%20for%20supercapacitor%20electrodes&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=D%C3%ADaz-Arriaga,%20Carlos%20Bellaner&rft.date=2024-06-01&rft.volume=35&rft.issue=18&rft.spage=1262&rft.pages=1262-&rft.artnum=1262&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-024-12956-z&rft_dat=%3Cproquest_cross%3E3072917716%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-90b4d4b6664423da42da936a2d18e3f0d66c4bf47dea955aebdf7137d1cb55843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3072917716&rft_id=info:pmid/&rfr_iscdi=true