Loading…
Persistent Behavior in Solar Energetic Particle Time Series
We investigate the long-term persistence of solar energetic particle (SEP) time series by means of four different methods: Hurst rescaled range R / S analysis, detrended fluctuation analysis, centered moving average analysis, and the fluctuation of natural time under the time reversal method. For th...
Saved in:
Published in: | The Astrophysical journal 2024-07, Vol.969 (1), p.64 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c257t-bfa3b152a1b53870b44fc042d441c3f200000c9b3dcafe0a7a2bbd844dd012f3 |
container_end_page | |
container_issue | 1 |
container_start_page | 64 |
container_title | The Astrophysical journal |
container_volume | 969 |
creator | Sarlis, N. V. Livadiotis, G. McComas, D. J. Cuesta, M. E. Khoo, L. Y. Cohen, C. M. S. Mitchell, D. G. Schwadron, N. A. |
description | We investigate the long-term persistence of solar energetic particle (SEP) time series by means of four different methods: Hurst rescaled range
R
/
S
analysis, detrended fluctuation analysis, centered moving average analysis, and the fluctuation of natural time under the time reversal method. For these analyses, we use data sets from the Integrated Science Investigation of the Sun instrument suite on board NASA's Parker Solar Probe. Background systematic noise is modeled using cross-correlation analysis between different SEP energy channels and subtracted from the original data. The use of these four methods for deriving the time-series persistence allows us to (i) differentiate between quiet- and active-Sun periods based on the values of the corresponding self-similarity exponents alone; (ii) identify the onset of an ongoing activity well before it reaches its maximum SEP flux; (iii) reveal an interesting fine structure when activity is observed; and (iv) provide, for the first time, an estimate of the maximum SEP flux of a future storm based on the entropy change of natural time under time reversal. |
doi_str_mv | 10.3847/1538-4357/ad479d |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3074796737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c815afd040ef44d39505d3fa2d18a7bc</doaj_id><sourcerecordid>3074796737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-bfa3b152a1b53870b44fc042d441c3f200000c9b3dcafe0a7a2bbd844dd012f3</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt3jwteXZtsss0unrRULRQstAdvYfJVU9pNTbaC_71Zt-jJXIYM7715_BC6JviOVoyPSEmrnNGSj0AzXusTNPhdnaIBxpjlY8rfztFFjJvuW9T1AN0vTIgutqZps0fzDp_Oh8w12dJvIWTTxoS1aZ3KFhDS2Jps5XYmW5rgTLxEZxa20Vwd5xCtnqaryUs-f32eTR7muSpK3ubSApWkLIDIVIhjyZhV6bxmjChqC9w9VUuqFViDgUMhpa4Y0xqTwtIhmvWx2sNG7IPbQfgSHpz4WfiwFsdyQlWkBKsxw8YmP61LXGpqodCkAi5Vyrrps_bBfxxMbMXGH0KT2guKeeI25pQnFe5VKvgYg7G_VwkWHW3RoRUdWtHTTpbb3uL8_i_zX_k3805_uw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3074796737</pqid></control><display><type>article</type><title>Persistent Behavior in Solar Energetic Particle Time Series</title><source>EZB Electronic Journals Library</source><creator>Sarlis, N. V. ; Livadiotis, G. ; McComas, D. J. ; Cuesta, M. E. ; Khoo, L. Y. ; Cohen, C. M. S. ; Mitchell, D. G. ; Schwadron, N. A.</creator><creatorcontrib>Sarlis, N. V. ; Livadiotis, G. ; McComas, D. J. ; Cuesta, M. E. ; Khoo, L. Y. ; Cohen, C. M. S. ; Mitchell, D. G. ; Schwadron, N. A.</creatorcontrib><description>We investigate the long-term persistence of solar energetic particle (SEP) time series by means of four different methods: Hurst rescaled range
R
/
S
analysis, detrended fluctuation analysis, centered moving average analysis, and the fluctuation of natural time under the time reversal method. For these analyses, we use data sets from the Integrated Science Investigation of the Sun instrument suite on board NASA's Parker Solar Probe. Background systematic noise is modeled using cross-correlation analysis between different SEP energy channels and subtracted from the original data. The use of these four methods for deriving the time-series persistence allows us to (i) differentiate between quiet- and active-Sun periods based on the values of the corresponding self-similarity exponents alone; (ii) identify the onset of an ongoing activity well before it reaches its maximum SEP flux; (iii) reveal an interesting fine structure when activity is observed; and (iv) provide, for the first time, an estimate of the maximum SEP flux of a future storm based on the entropy change of natural time under time reversal.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ad479d</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrostatistics ; Background noise ; Correlation analysis ; Cross correlation ; Energetic particles ; Fine structure ; Interdisciplinary astronomy ; Self-similarity ; Solar energetic particles ; Solar probes ; Solar wind ; Time series ; Time series analysis</subject><ispartof>The Astrophysical journal, 2024-07, Vol.969 (1), p.64</ispartof><rights>2024. The Author(s). Published by the American Astronomical Society.</rights><rights>2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c257t-bfa3b152a1b53870b44fc042d441c3f200000c9b3dcafe0a7a2bbd844dd012f3</cites><orcidid>0000-0003-0412-1064 ; 0000-0002-3737-9283 ; 0000-0003-1960-2119 ; 0000-0002-0978-8127 ; 0000-0002-7655-6019 ; 0000-0001-6160-1158 ; 0000-0002-7341-2992 ; 0000-0002-8483-519X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Sarlis, N. V.</creatorcontrib><creatorcontrib>Livadiotis, G.</creatorcontrib><creatorcontrib>McComas, D. J.</creatorcontrib><creatorcontrib>Cuesta, M. E.</creatorcontrib><creatorcontrib>Khoo, L. Y.</creatorcontrib><creatorcontrib>Cohen, C. M. S.</creatorcontrib><creatorcontrib>Mitchell, D. G.</creatorcontrib><creatorcontrib>Schwadron, N. A.</creatorcontrib><title>Persistent Behavior in Solar Energetic Particle Time Series</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We investigate the long-term persistence of solar energetic particle (SEP) time series by means of four different methods: Hurst rescaled range
R
/
S
analysis, detrended fluctuation analysis, centered moving average analysis, and the fluctuation of natural time under the time reversal method. For these analyses, we use data sets from the Integrated Science Investigation of the Sun instrument suite on board NASA's Parker Solar Probe. Background systematic noise is modeled using cross-correlation analysis between different SEP energy channels and subtracted from the original data. The use of these four methods for deriving the time-series persistence allows us to (i) differentiate between quiet- and active-Sun periods based on the values of the corresponding self-similarity exponents alone; (ii) identify the onset of an ongoing activity well before it reaches its maximum SEP flux; (iii) reveal an interesting fine structure when activity is observed; and (iv) provide, for the first time, an estimate of the maximum SEP flux of a future storm based on the entropy change of natural time under time reversal.</description><subject>Astrostatistics</subject><subject>Background noise</subject><subject>Correlation analysis</subject><subject>Cross correlation</subject><subject>Energetic particles</subject><subject>Fine structure</subject><subject>Interdisciplinary astronomy</subject><subject>Self-similarity</subject><subject>Solar energetic particles</subject><subject>Solar probes</subject><subject>Solar wind</subject><subject>Time series</subject><subject>Time series analysis</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp1kM1LAzEQxYMoWKt3jwteXZtsss0unrRULRQstAdvYfJVU9pNTbaC_71Zt-jJXIYM7715_BC6JviOVoyPSEmrnNGSj0AzXusTNPhdnaIBxpjlY8rfztFFjJvuW9T1AN0vTIgutqZps0fzDp_Oh8w12dJvIWTTxoS1aZ3KFhDS2Jps5XYmW5rgTLxEZxa20Vwd5xCtnqaryUs-f32eTR7muSpK3ubSApWkLIDIVIhjyZhV6bxmjChqC9w9VUuqFViDgUMhpa4Y0xqTwtIhmvWx2sNG7IPbQfgSHpz4WfiwFsdyQlWkBKsxw8YmP61LXGpqodCkAi5Vyrrps_bBfxxMbMXGH0KT2guKeeI25pQnFe5VKvgYg7G_VwkWHW3RoRUdWtHTTpbb3uL8_i_zX_k3805_uw</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Sarlis, N. V.</creator><creator>Livadiotis, G.</creator><creator>McComas, D. J.</creator><creator>Cuesta, M. E.</creator><creator>Khoo, L. Y.</creator><creator>Cohen, C. M. S.</creator><creator>Mitchell, D. G.</creator><creator>Schwadron, N. A.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0412-1064</orcidid><orcidid>https://orcid.org/0000-0002-3737-9283</orcidid><orcidid>https://orcid.org/0000-0003-1960-2119</orcidid><orcidid>https://orcid.org/0000-0002-0978-8127</orcidid><orcidid>https://orcid.org/0000-0002-7655-6019</orcidid><orcidid>https://orcid.org/0000-0001-6160-1158</orcidid><orcidid>https://orcid.org/0000-0002-7341-2992</orcidid><orcidid>https://orcid.org/0000-0002-8483-519X</orcidid></search><sort><creationdate>20240701</creationdate><title>Persistent Behavior in Solar Energetic Particle Time Series</title><author>Sarlis, N. V. ; Livadiotis, G. ; McComas, D. J. ; Cuesta, M. E. ; Khoo, L. Y. ; Cohen, C. M. S. ; Mitchell, D. G. ; Schwadron, N. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-bfa3b152a1b53870b44fc042d441c3f200000c9b3dcafe0a7a2bbd844dd012f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Astrostatistics</topic><topic>Background noise</topic><topic>Correlation analysis</topic><topic>Cross correlation</topic><topic>Energetic particles</topic><topic>Fine structure</topic><topic>Interdisciplinary astronomy</topic><topic>Self-similarity</topic><topic>Solar energetic particles</topic><topic>Solar probes</topic><topic>Solar wind</topic><topic>Time series</topic><topic>Time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarlis, N. V.</creatorcontrib><creatorcontrib>Livadiotis, G.</creatorcontrib><creatorcontrib>McComas, D. J.</creatorcontrib><creatorcontrib>Cuesta, M. E.</creatorcontrib><creatorcontrib>Khoo, L. Y.</creatorcontrib><creatorcontrib>Cohen, C. M. S.</creatorcontrib><creatorcontrib>Mitchell, D. G.</creatorcontrib><creatorcontrib>Schwadron, N. A.</creatorcontrib><collection>IOP Publishing Free Content(OpenAccess)</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarlis, N. V.</au><au>Livadiotis, G.</au><au>McComas, D. J.</au><au>Cuesta, M. E.</au><au>Khoo, L. Y.</au><au>Cohen, C. M. S.</au><au>Mitchell, D. G.</au><au>Schwadron, N. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Persistent Behavior in Solar Energetic Particle Time Series</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>969</volume><issue>1</issue><spage>64</spage><pages>64-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We investigate the long-term persistence of solar energetic particle (SEP) time series by means of four different methods: Hurst rescaled range
R
/
S
analysis, detrended fluctuation analysis, centered moving average analysis, and the fluctuation of natural time under the time reversal method. For these analyses, we use data sets from the Integrated Science Investigation of the Sun instrument suite on board NASA's Parker Solar Probe. Background systematic noise is modeled using cross-correlation analysis between different SEP energy channels and subtracted from the original data. The use of these four methods for deriving the time-series persistence allows us to (i) differentiate between quiet- and active-Sun periods based on the values of the corresponding self-similarity exponents alone; (ii) identify the onset of an ongoing activity well before it reaches its maximum SEP flux; (iii) reveal an interesting fine structure when activity is observed; and (iv) provide, for the first time, an estimate of the maximum SEP flux of a future storm based on the entropy change of natural time under time reversal.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ad479d</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-0412-1064</orcidid><orcidid>https://orcid.org/0000-0002-3737-9283</orcidid><orcidid>https://orcid.org/0000-0003-1960-2119</orcidid><orcidid>https://orcid.org/0000-0002-0978-8127</orcidid><orcidid>https://orcid.org/0000-0002-7655-6019</orcidid><orcidid>https://orcid.org/0000-0001-6160-1158</orcidid><orcidid>https://orcid.org/0000-0002-7341-2992</orcidid><orcidid>https://orcid.org/0000-0002-8483-519X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2024-07, Vol.969 (1), p.64 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_journals_3074796737 |
source | EZB Electronic Journals Library |
subjects | Astrostatistics Background noise Correlation analysis Cross correlation Energetic particles Fine structure Interdisciplinary astronomy Self-similarity Solar energetic particles Solar probes Solar wind Time series Time series analysis |
title | Persistent Behavior in Solar Energetic Particle Time Series |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A41%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Persistent%20Behavior%20in%20Solar%20Energetic%20Particle%20Time%20Series&rft.jtitle=The%20Astrophysical%20journal&rft.au=Sarlis,%20N.%20V.&rft.date=2024-07-01&rft.volume=969&rft.issue=1&rft.spage=64&rft.pages=64-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ad479d&rft_dat=%3Cproquest_doaj_%3E3074796737%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c257t-bfa3b152a1b53870b44fc042d441c3f200000c9b3dcafe0a7a2bbd844dd012f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3074796737&rft_id=info:pmid/&rfr_iscdi=true |