Loading…

Persistent Behavior in Solar Energetic Particle Time Series

We investigate the long-term persistence of solar energetic particle (SEP) time series by means of four different methods: Hurst rescaled range R / S analysis, detrended fluctuation analysis, centered moving average analysis, and the fluctuation of natural time under the time reversal method. For th...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2024-07, Vol.969 (1), p.64
Main Authors: Sarlis, N. V., Livadiotis, G., McComas, D. J., Cuesta, M. E., Khoo, L. Y., Cohen, C. M. S., Mitchell, D. G., Schwadron, N. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c257t-bfa3b152a1b53870b44fc042d441c3f200000c9b3dcafe0a7a2bbd844dd012f3
container_end_page
container_issue 1
container_start_page 64
container_title The Astrophysical journal
container_volume 969
creator Sarlis, N. V.
Livadiotis, G.
McComas, D. J.
Cuesta, M. E.
Khoo, L. Y.
Cohen, C. M. S.
Mitchell, D. G.
Schwadron, N. A.
description We investigate the long-term persistence of solar energetic particle (SEP) time series by means of four different methods: Hurst rescaled range R / S analysis, detrended fluctuation analysis, centered moving average analysis, and the fluctuation of natural time under the time reversal method. For these analyses, we use data sets from the Integrated Science Investigation of the Sun instrument suite on board NASA's Parker Solar Probe. Background systematic noise is modeled using cross-correlation analysis between different SEP energy channels and subtracted from the original data. The use of these four methods for deriving the time-series persistence allows us to (i) differentiate between quiet- and active-Sun periods based on the values of the corresponding self-similarity exponents alone; (ii) identify the onset of an ongoing activity well before it reaches its maximum SEP flux; (iii) reveal an interesting fine structure when activity is observed; and (iv) provide, for the first time, an estimate of the maximum SEP flux of a future storm based on the entropy change of natural time under time reversal.
doi_str_mv 10.3847/1538-4357/ad479d
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3074796737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c815afd040ef44d39505d3fa2d18a7bc</doaj_id><sourcerecordid>3074796737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-bfa3b152a1b53870b44fc042d441c3f200000c9b3dcafe0a7a2bbd844dd012f3</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt3jwteXZtsss0unrRULRQstAdvYfJVU9pNTbaC_71Zt-jJXIYM7715_BC6JviOVoyPSEmrnNGSj0AzXusTNPhdnaIBxpjlY8rfztFFjJvuW9T1AN0vTIgutqZps0fzDp_Oh8w12dJvIWTTxoS1aZ3KFhDS2Jps5XYmW5rgTLxEZxa20Vwd5xCtnqaryUs-f32eTR7muSpK3ubSApWkLIDIVIhjyZhV6bxmjChqC9w9VUuqFViDgUMhpa4Y0xqTwtIhmvWx2sNG7IPbQfgSHpz4WfiwFsdyQlWkBKsxw8YmP61LXGpqodCkAi5Vyrrps_bBfxxMbMXGH0KT2guKeeI25pQnFe5VKvgYg7G_VwkWHW3RoRUdWtHTTpbb3uL8_i_zX_k3805_uw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3074796737</pqid></control><display><type>article</type><title>Persistent Behavior in Solar Energetic Particle Time Series</title><source>EZB Electronic Journals Library</source><creator>Sarlis, N. V. ; Livadiotis, G. ; McComas, D. J. ; Cuesta, M. E. ; Khoo, L. Y. ; Cohen, C. M. S. ; Mitchell, D. G. ; Schwadron, N. A.</creator><creatorcontrib>Sarlis, N. V. ; Livadiotis, G. ; McComas, D. J. ; Cuesta, M. E. ; Khoo, L. Y. ; Cohen, C. M. S. ; Mitchell, D. G. ; Schwadron, N. A.</creatorcontrib><description>We investigate the long-term persistence of solar energetic particle (SEP) time series by means of four different methods: Hurst rescaled range R / S analysis, detrended fluctuation analysis, centered moving average analysis, and the fluctuation of natural time under the time reversal method. For these analyses, we use data sets from the Integrated Science Investigation of the Sun instrument suite on board NASA's Parker Solar Probe. Background systematic noise is modeled using cross-correlation analysis between different SEP energy channels and subtracted from the original data. The use of these four methods for deriving the time-series persistence allows us to (i) differentiate between quiet- and active-Sun periods based on the values of the corresponding self-similarity exponents alone; (ii) identify the onset of an ongoing activity well before it reaches its maximum SEP flux; (iii) reveal an interesting fine structure when activity is observed; and (iv) provide, for the first time, an estimate of the maximum SEP flux of a future storm based on the entropy change of natural time under time reversal.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ad479d</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrostatistics ; Background noise ; Correlation analysis ; Cross correlation ; Energetic particles ; Fine structure ; Interdisciplinary astronomy ; Self-similarity ; Solar energetic particles ; Solar probes ; Solar wind ; Time series ; Time series analysis</subject><ispartof>The Astrophysical journal, 2024-07, Vol.969 (1), p.64</ispartof><rights>2024. The Author(s). Published by the American Astronomical Society.</rights><rights>2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c257t-bfa3b152a1b53870b44fc042d441c3f200000c9b3dcafe0a7a2bbd844dd012f3</cites><orcidid>0000-0003-0412-1064 ; 0000-0002-3737-9283 ; 0000-0003-1960-2119 ; 0000-0002-0978-8127 ; 0000-0002-7655-6019 ; 0000-0001-6160-1158 ; 0000-0002-7341-2992 ; 0000-0002-8483-519X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Sarlis, N. V.</creatorcontrib><creatorcontrib>Livadiotis, G.</creatorcontrib><creatorcontrib>McComas, D. J.</creatorcontrib><creatorcontrib>Cuesta, M. E.</creatorcontrib><creatorcontrib>Khoo, L. Y.</creatorcontrib><creatorcontrib>Cohen, C. M. S.</creatorcontrib><creatorcontrib>Mitchell, D. G.</creatorcontrib><creatorcontrib>Schwadron, N. A.</creatorcontrib><title>Persistent Behavior in Solar Energetic Particle Time Series</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We investigate the long-term persistence of solar energetic particle (SEP) time series by means of four different methods: Hurst rescaled range R / S analysis, detrended fluctuation analysis, centered moving average analysis, and the fluctuation of natural time under the time reversal method. For these analyses, we use data sets from the Integrated Science Investigation of the Sun instrument suite on board NASA's Parker Solar Probe. Background systematic noise is modeled using cross-correlation analysis between different SEP energy channels and subtracted from the original data. The use of these four methods for deriving the time-series persistence allows us to (i) differentiate between quiet- and active-Sun periods based on the values of the corresponding self-similarity exponents alone; (ii) identify the onset of an ongoing activity well before it reaches its maximum SEP flux; (iii) reveal an interesting fine structure when activity is observed; and (iv) provide, for the first time, an estimate of the maximum SEP flux of a future storm based on the entropy change of natural time under time reversal.</description><subject>Astrostatistics</subject><subject>Background noise</subject><subject>Correlation analysis</subject><subject>Cross correlation</subject><subject>Energetic particles</subject><subject>Fine structure</subject><subject>Interdisciplinary astronomy</subject><subject>Self-similarity</subject><subject>Solar energetic particles</subject><subject>Solar probes</subject><subject>Solar wind</subject><subject>Time series</subject><subject>Time series analysis</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp1kM1LAzEQxYMoWKt3jwteXZtsss0unrRULRQstAdvYfJVU9pNTbaC_71Zt-jJXIYM7715_BC6JviOVoyPSEmrnNGSj0AzXusTNPhdnaIBxpjlY8rfztFFjJvuW9T1AN0vTIgutqZps0fzDp_Oh8w12dJvIWTTxoS1aZ3KFhDS2Jps5XYmW5rgTLxEZxa20Vwd5xCtnqaryUs-f32eTR7muSpK3ubSApWkLIDIVIhjyZhV6bxmjChqC9w9VUuqFViDgUMhpa4Y0xqTwtIhmvWx2sNG7IPbQfgSHpz4WfiwFsdyQlWkBKsxw8YmP61LXGpqodCkAi5Vyrrps_bBfxxMbMXGH0KT2guKeeI25pQnFe5VKvgYg7G_VwkWHW3RoRUdWtHTTpbb3uL8_i_zX_k3805_uw</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Sarlis, N. V.</creator><creator>Livadiotis, G.</creator><creator>McComas, D. J.</creator><creator>Cuesta, M. E.</creator><creator>Khoo, L. Y.</creator><creator>Cohen, C. M. S.</creator><creator>Mitchell, D. G.</creator><creator>Schwadron, N. A.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0412-1064</orcidid><orcidid>https://orcid.org/0000-0002-3737-9283</orcidid><orcidid>https://orcid.org/0000-0003-1960-2119</orcidid><orcidid>https://orcid.org/0000-0002-0978-8127</orcidid><orcidid>https://orcid.org/0000-0002-7655-6019</orcidid><orcidid>https://orcid.org/0000-0001-6160-1158</orcidid><orcidid>https://orcid.org/0000-0002-7341-2992</orcidid><orcidid>https://orcid.org/0000-0002-8483-519X</orcidid></search><sort><creationdate>20240701</creationdate><title>Persistent Behavior in Solar Energetic Particle Time Series</title><author>Sarlis, N. V. ; Livadiotis, G. ; McComas, D. J. ; Cuesta, M. E. ; Khoo, L. Y. ; Cohen, C. M. S. ; Mitchell, D. G. ; Schwadron, N. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-bfa3b152a1b53870b44fc042d441c3f200000c9b3dcafe0a7a2bbd844dd012f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Astrostatistics</topic><topic>Background noise</topic><topic>Correlation analysis</topic><topic>Cross correlation</topic><topic>Energetic particles</topic><topic>Fine structure</topic><topic>Interdisciplinary astronomy</topic><topic>Self-similarity</topic><topic>Solar energetic particles</topic><topic>Solar probes</topic><topic>Solar wind</topic><topic>Time series</topic><topic>Time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarlis, N. V.</creatorcontrib><creatorcontrib>Livadiotis, G.</creatorcontrib><creatorcontrib>McComas, D. J.</creatorcontrib><creatorcontrib>Cuesta, M. E.</creatorcontrib><creatorcontrib>Khoo, L. Y.</creatorcontrib><creatorcontrib>Cohen, C. M. S.</creatorcontrib><creatorcontrib>Mitchell, D. G.</creatorcontrib><creatorcontrib>Schwadron, N. A.</creatorcontrib><collection>IOP Publishing Free Content(OpenAccess)</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarlis, N. V.</au><au>Livadiotis, G.</au><au>McComas, D. J.</au><au>Cuesta, M. E.</au><au>Khoo, L. Y.</au><au>Cohen, C. M. S.</au><au>Mitchell, D. G.</au><au>Schwadron, N. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Persistent Behavior in Solar Energetic Particle Time Series</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>969</volume><issue>1</issue><spage>64</spage><pages>64-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We investigate the long-term persistence of solar energetic particle (SEP) time series by means of four different methods: Hurst rescaled range R / S analysis, detrended fluctuation analysis, centered moving average analysis, and the fluctuation of natural time under the time reversal method. For these analyses, we use data sets from the Integrated Science Investigation of the Sun instrument suite on board NASA's Parker Solar Probe. Background systematic noise is modeled using cross-correlation analysis between different SEP energy channels and subtracted from the original data. The use of these four methods for deriving the time-series persistence allows us to (i) differentiate between quiet- and active-Sun periods based on the values of the corresponding self-similarity exponents alone; (ii) identify the onset of an ongoing activity well before it reaches its maximum SEP flux; (iii) reveal an interesting fine structure when activity is observed; and (iv) provide, for the first time, an estimate of the maximum SEP flux of a future storm based on the entropy change of natural time under time reversal.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ad479d</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-0412-1064</orcidid><orcidid>https://orcid.org/0000-0002-3737-9283</orcidid><orcidid>https://orcid.org/0000-0003-1960-2119</orcidid><orcidid>https://orcid.org/0000-0002-0978-8127</orcidid><orcidid>https://orcid.org/0000-0002-7655-6019</orcidid><orcidid>https://orcid.org/0000-0001-6160-1158</orcidid><orcidid>https://orcid.org/0000-0002-7341-2992</orcidid><orcidid>https://orcid.org/0000-0002-8483-519X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2024-07, Vol.969 (1), p.64
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_3074796737
source EZB Electronic Journals Library
subjects Astrostatistics
Background noise
Correlation analysis
Cross correlation
Energetic particles
Fine structure
Interdisciplinary astronomy
Self-similarity
Solar energetic particles
Solar probes
Solar wind
Time series
Time series analysis
title Persistent Behavior in Solar Energetic Particle Time Series
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A41%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Persistent%20Behavior%20in%20Solar%20Energetic%20Particle%20Time%20Series&rft.jtitle=The%20Astrophysical%20journal&rft.au=Sarlis,%20N.%20V.&rft.date=2024-07-01&rft.volume=969&rft.issue=1&rft.spage=64&rft.pages=64-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ad479d&rft_dat=%3Cproquest_doaj_%3E3074796737%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c257t-bfa3b152a1b53870b44fc042d441c3f200000c9b3dcafe0a7a2bbd844dd012f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3074796737&rft_id=info:pmid/&rfr_iscdi=true