Loading…
Kermut: Composite kernel regression for protein variant effects
Reliable prediction of protein variant effects is crucial for both protein optimization and for advancing biological understanding. For practical use in protein engineering, it is important that we can also provide reliable uncertainty estimates for our predictions, and while prediction accuracy has...
Saved in:
Published in: | arXiv.org 2024-10 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Groth, Peter Mørch Kerrn, Mads Herbert Olsen, Lars Salomon, Jesper Boomsma, Wouter |
description | Reliable prediction of protein variant effects is crucial for both protein optimization and for advancing biological understanding. For practical use in protein engineering, it is important that we can also provide reliable uncertainty estimates for our predictions, and while prediction accuracy has seen much progress in recent years, uncertainty metrics are rarely reported. We here provide a Gaussian process regression model, Kermut, with a novel composite kernel for modeling mutation similarity, which obtains state-of-the-art performance for supervised protein variant effect prediction while also offering estimates of uncertainty through its posterior. An analysis of the quality of the uncertainty estimates demonstrates that our model provides meaningful levels of overall calibration, but that instance-specific uncertainty calibration remains more challenging. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3074864254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3074864254</sourcerecordid><originalsourceid>FETCH-proquest_journals_30748642543</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtO1xwLsT8tMXFoSiCq3spciOpbVLvTX1-O_gATmc430pkSutDURulNiJn7qWUqqyUtToTpxvSOKcjNHGcIvuE8EIKOADhk5DZxwAuEkwUE_oAn458FxKgc_hIvBNr1w2M-a9bsb-c7821WPx7Rk5tH2cKy2q1rExdGmWN_k99ATjuOT4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3074864254</pqid></control><display><type>article</type><title>Kermut: Composite kernel regression for protein variant effects</title><source>Publicly Available Content (ProQuest)</source><creator>Groth, Peter Mørch ; Kerrn, Mads Herbert ; Olsen, Lars ; Salomon, Jesper ; Boomsma, Wouter</creator><creatorcontrib>Groth, Peter Mørch ; Kerrn, Mads Herbert ; Olsen, Lars ; Salomon, Jesper ; Boomsma, Wouter</creatorcontrib><description>Reliable prediction of protein variant effects is crucial for both protein optimization and for advancing biological understanding. For practical use in protein engineering, it is important that we can also provide reliable uncertainty estimates for our predictions, and while prediction accuracy has seen much progress in recent years, uncertainty metrics are rarely reported. We here provide a Gaussian process regression model, Kermut, with a novel composite kernel for modeling mutation similarity, which obtains state-of-the-art performance for supervised protein variant effect prediction while also offering estimates of uncertainty through its posterior. An analysis of the quality of the uncertainty estimates demonstrates that our model provides meaningful levels of overall calibration, but that instance-specific uncertainty calibration remains more challenging.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Estimates ; Gaussian process ; Proteins ; Regression models ; Uncertainty</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3074864254?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Groth, Peter Mørch</creatorcontrib><creatorcontrib>Kerrn, Mads Herbert</creatorcontrib><creatorcontrib>Olsen, Lars</creatorcontrib><creatorcontrib>Salomon, Jesper</creatorcontrib><creatorcontrib>Boomsma, Wouter</creatorcontrib><title>Kermut: Composite kernel regression for protein variant effects</title><title>arXiv.org</title><description>Reliable prediction of protein variant effects is crucial for both protein optimization and for advancing biological understanding. For practical use in protein engineering, it is important that we can also provide reliable uncertainty estimates for our predictions, and while prediction accuracy has seen much progress in recent years, uncertainty metrics are rarely reported. We here provide a Gaussian process regression model, Kermut, with a novel composite kernel for modeling mutation similarity, which obtains state-of-the-art performance for supervised protein variant effect prediction while also offering estimates of uncertainty through its posterior. An analysis of the quality of the uncertainty estimates demonstrates that our model provides meaningful levels of overall calibration, but that instance-specific uncertainty calibration remains more challenging.</description><subject>Estimates</subject><subject>Gaussian process</subject><subject>Proteins</subject><subject>Regression models</subject><subject>Uncertainty</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtO1xwLsT8tMXFoSiCq3spciOpbVLvTX1-O_gATmc430pkSutDURulNiJn7qWUqqyUtToTpxvSOKcjNHGcIvuE8EIKOADhk5DZxwAuEkwUE_oAn458FxKgc_hIvBNr1w2M-a9bsb-c7821WPx7Rk5tH2cKy2q1rExdGmWN_k99ATjuOT4</recordid><startdate>20241031</startdate><enddate>20241031</enddate><creator>Groth, Peter Mørch</creator><creator>Kerrn, Mads Herbert</creator><creator>Olsen, Lars</creator><creator>Salomon, Jesper</creator><creator>Boomsma, Wouter</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241031</creationdate><title>Kermut: Composite kernel regression for protein variant effects</title><author>Groth, Peter Mørch ; Kerrn, Mads Herbert ; Olsen, Lars ; Salomon, Jesper ; Boomsma, Wouter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30748642543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Estimates</topic><topic>Gaussian process</topic><topic>Proteins</topic><topic>Regression models</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Groth, Peter Mørch</creatorcontrib><creatorcontrib>Kerrn, Mads Herbert</creatorcontrib><creatorcontrib>Olsen, Lars</creatorcontrib><creatorcontrib>Salomon, Jesper</creatorcontrib><creatorcontrib>Boomsma, Wouter</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Groth, Peter Mørch</au><au>Kerrn, Mads Herbert</au><au>Olsen, Lars</au><au>Salomon, Jesper</au><au>Boomsma, Wouter</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Kermut: Composite kernel regression for protein variant effects</atitle><jtitle>arXiv.org</jtitle><date>2024-10-31</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Reliable prediction of protein variant effects is crucial for both protein optimization and for advancing biological understanding. For practical use in protein engineering, it is important that we can also provide reliable uncertainty estimates for our predictions, and while prediction accuracy has seen much progress in recent years, uncertainty metrics are rarely reported. We here provide a Gaussian process regression model, Kermut, with a novel composite kernel for modeling mutation similarity, which obtains state-of-the-art performance for supervised protein variant effect prediction while also offering estimates of uncertainty through its posterior. An analysis of the quality of the uncertainty estimates demonstrates that our model provides meaningful levels of overall calibration, but that instance-specific uncertainty calibration remains more challenging.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3074864254 |
source | Publicly Available Content (ProQuest) |
subjects | Estimates Gaussian process Proteins Regression models Uncertainty |
title | Kermut: Composite kernel regression for protein variant effects |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T18%3A42%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Kermut:%20Composite%20kernel%20regression%20for%20protein%20variant%20effects&rft.jtitle=arXiv.org&rft.au=Groth,%20Peter%20M%C3%B8rch&rft.date=2024-10-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3074864254%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30748642543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3074864254&rft_id=info:pmid/&rfr_iscdi=true |