Loading…

Unbiased evaluation of ranking algorithms applied to the Chinese green patents citation network

As a phased achievement of technological innovation, patent analysis holds extraordinary research significance. By constructing patent citation networks, scholars have proposed various centrality algorithms (such as citation count, PageRank, LeaderRank, etc.) for evaluating the quality and influence...

Full description

Saved in:
Bibliographic Details
Published in:Scientometrics 2024, Vol.129 (6), p.2999-3021
Main Authors: Liu, Xipeng, Li, Xinmiao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-94861968b680c19bf711a6b933235aa33d40841af9e0b45b1463132f61ed105c3
container_end_page 3021
container_issue 6
container_start_page 2999
container_title Scientometrics
container_volume 129
creator Liu, Xipeng
Li, Xinmiao
description As a phased achievement of technological innovation, patent analysis holds extraordinary research significance. By constructing patent citation networks, scholars have proposed various centrality algorithms (such as citation count, PageRank, LeaderRank, etc.) for evaluating the quality and influence of patents. However, these centrality algorithms suffer from age bias, which means these algorithms are more inclined to obtain higher rankings for older patents, thus losing fairness to younger patents. Additionally, the selection of algorithm performance evaluation indicators is crucial. If the indicators are not chosen appropriately, the results may be affected. Therefore, based on the background of Chinese green patents, this paper develops an unbiased evaluation ranking algorithm to identify significant Chinese green patents earlier. The results demonstrate that the combination of the rescaled method and the AttriRank algorithm can effectively obtain the importance of patents, and provide a systematic and reasonable evaluation method for measuring patent value.
doi_str_mv 10.1007/s11192-024-05023-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3075277852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075277852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-94861968b680c19bf711a6b933235aa33d40841af9e0b45b1463132f61ed105c3</originalsourceid><addsrcrecordid>eNp9kDtPBCEURonRxHX1D1iRWKP3wjyY0mx8JSY2bk2YWWaWfcAIrMZ_LzomdlY053yXHEIuEa4RoL6JiNhwBrxgUAIXDI_IDEspGZcVHpMZoJCsQQGn5CzGDWRJgJwRtXSt1dGsqHnXu4NO1jvqexq021o3UL0bfLBpvY9Uj-POZjB5mtaGLtbWmWjoEIxxdNTJuBRpZ9O04Uz68GF7Tk56vYvm4vedk-X93evikT2_PDwtbp9Zx2tIrCnyN5tKtpWEDpu2rxF11TZCcFFqLcSqAFmg7hsDbVG2WFQCBe8rNCuEshNzcjXtjsG_HUxMauMPweWTSkBd8rqWJc8Un6gu-BiD6dUY7F6HT4WgvkOqKaTKIdVPSIVZEpMUM-wGE_6m_7G-AM6Bdbc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075277852</pqid></control><display><type>article</type><title>Unbiased evaluation of ranking algorithms applied to the Chinese green patents citation network</title><source>Library &amp; Information Science Abstracts (LISA)</source><source>Springer Nature</source><creator>Liu, Xipeng ; Li, Xinmiao</creator><creatorcontrib>Liu, Xipeng ; Li, Xinmiao</creatorcontrib><description>As a phased achievement of technological innovation, patent analysis holds extraordinary research significance. By constructing patent citation networks, scholars have proposed various centrality algorithms (such as citation count, PageRank, LeaderRank, etc.) for evaluating the quality and influence of patents. However, these centrality algorithms suffer from age bias, which means these algorithms are more inclined to obtain higher rankings for older patents, thus losing fairness to younger patents. Additionally, the selection of algorithm performance evaluation indicators is crucial. If the indicators are not chosen appropriately, the results may be affected. Therefore, based on the background of Chinese green patents, this paper develops an unbiased evaluation ranking algorithm to identify significant Chinese green patents earlier. The results demonstrate that the combination of the rescaled method and the AttriRank algorithm can effectively obtain the importance of patents, and provide a systematic and reasonable evaluation method for measuring patent value.</description><identifier>ISSN: 0138-9130</identifier><identifier>EISSN: 1588-2861</identifier><identifier>DOI: 10.1007/s11192-024-05023-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Computer Science ; Indicators ; Information Storage and Retrieval ; Library Science ; Measurement methods ; Performance evaluation ; Ranking ; Search algorithms ; Technological change</subject><ispartof>Scientometrics, 2024, Vol.129 (6), p.2999-3021</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-94861968b680c19bf711a6b933235aa33d40841af9e0b45b1463132f61ed105c3</cites><orcidid>0000-0001-7558-0386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,34135</link.rule.ids></links><search><creatorcontrib>Liu, Xipeng</creatorcontrib><creatorcontrib>Li, Xinmiao</creatorcontrib><title>Unbiased evaluation of ranking algorithms applied to the Chinese green patents citation network</title><title>Scientometrics</title><addtitle>Scientometrics</addtitle><description>As a phased achievement of technological innovation, patent analysis holds extraordinary research significance. By constructing patent citation networks, scholars have proposed various centrality algorithms (such as citation count, PageRank, LeaderRank, etc.) for evaluating the quality and influence of patents. However, these centrality algorithms suffer from age bias, which means these algorithms are more inclined to obtain higher rankings for older patents, thus losing fairness to younger patents. Additionally, the selection of algorithm performance evaluation indicators is crucial. If the indicators are not chosen appropriately, the results may be affected. Therefore, based on the background of Chinese green patents, this paper develops an unbiased evaluation ranking algorithm to identify significant Chinese green patents earlier. The results demonstrate that the combination of the rescaled method and the AttriRank algorithm can effectively obtain the importance of patents, and provide a systematic and reasonable evaluation method for measuring patent value.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Indicators</subject><subject>Information Storage and Retrieval</subject><subject>Library Science</subject><subject>Measurement methods</subject><subject>Performance evaluation</subject><subject>Ranking</subject><subject>Search algorithms</subject><subject>Technological change</subject><issn>0138-9130</issn><issn>1588-2861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>F2A</sourceid><recordid>eNp9kDtPBCEURonRxHX1D1iRWKP3wjyY0mx8JSY2bk2YWWaWfcAIrMZ_LzomdlY053yXHEIuEa4RoL6JiNhwBrxgUAIXDI_IDEspGZcVHpMZoJCsQQGn5CzGDWRJgJwRtXSt1dGsqHnXu4NO1jvqexq021o3UL0bfLBpvY9Uj-POZjB5mtaGLtbWmWjoEIxxdNTJuBRpZ9O04Uz68GF7Tk56vYvm4vedk-X93evikT2_PDwtbp9Zx2tIrCnyN5tKtpWEDpu2rxF11TZCcFFqLcSqAFmg7hsDbVG2WFQCBe8rNCuEshNzcjXtjsG_HUxMauMPweWTSkBd8rqWJc8Un6gu-BiD6dUY7F6HT4WgvkOqKaTKIdVPSIVZEpMUM-wGE_6m_7G-AM6Bdbc</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Liu, Xipeng</creator><creator>Li, Xinmiao</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>E3H</scope><scope>F2A</scope><orcidid>https://orcid.org/0000-0001-7558-0386</orcidid></search><sort><creationdate>2024</creationdate><title>Unbiased evaluation of ranking algorithms applied to the Chinese green patents citation network</title><author>Liu, Xipeng ; Li, Xinmiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-94861968b680c19bf711a6b933235aa33d40841af9e0b45b1463132f61ed105c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Indicators</topic><topic>Information Storage and Retrieval</topic><topic>Library Science</topic><topic>Measurement methods</topic><topic>Performance evaluation</topic><topic>Ranking</topic><topic>Search algorithms</topic><topic>Technological change</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xipeng</creatorcontrib><creatorcontrib>Li, Xinmiao</creatorcontrib><collection>CrossRef</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><jtitle>Scientometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xipeng</au><au>Li, Xinmiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unbiased evaluation of ranking algorithms applied to the Chinese green patents citation network</atitle><jtitle>Scientometrics</jtitle><stitle>Scientometrics</stitle><date>2024</date><risdate>2024</risdate><volume>129</volume><issue>6</issue><spage>2999</spage><epage>3021</epage><pages>2999-3021</pages><issn>0138-9130</issn><eissn>1588-2861</eissn><abstract>As a phased achievement of technological innovation, patent analysis holds extraordinary research significance. By constructing patent citation networks, scholars have proposed various centrality algorithms (such as citation count, PageRank, LeaderRank, etc.) for evaluating the quality and influence of patents. However, these centrality algorithms suffer from age bias, which means these algorithms are more inclined to obtain higher rankings for older patents, thus losing fairness to younger patents. Additionally, the selection of algorithm performance evaluation indicators is crucial. If the indicators are not chosen appropriately, the results may be affected. Therefore, based on the background of Chinese green patents, this paper develops an unbiased evaluation ranking algorithm to identify significant Chinese green patents earlier. The results demonstrate that the combination of the rescaled method and the AttriRank algorithm can effectively obtain the importance of patents, and provide a systematic and reasonable evaluation method for measuring patent value.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11192-024-05023-1</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-7558-0386</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0138-9130
ispartof Scientometrics, 2024, Vol.129 (6), p.2999-3021
issn 0138-9130
1588-2861
language eng
recordid cdi_proquest_journals_3075277852
source Library & Information Science Abstracts (LISA); Springer Nature
subjects Algorithms
Computer Science
Indicators
Information Storage and Retrieval
Library Science
Measurement methods
Performance evaluation
Ranking
Search algorithms
Technological change
title Unbiased evaluation of ranking algorithms applied to the Chinese green patents citation network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A33%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unbiased%20evaluation%20of%20ranking%20algorithms%20applied%20to%20the%20Chinese%20green%20patents%20citation%20network&rft.jtitle=Scientometrics&rft.au=Liu,%20Xipeng&rft.date=2024&rft.volume=129&rft.issue=6&rft.spage=2999&rft.epage=3021&rft.pages=2999-3021&rft.issn=0138-9130&rft.eissn=1588-2861&rft_id=info:doi/10.1007/s11192-024-05023-1&rft_dat=%3Cproquest_cross%3E3075277852%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-94861968b680c19bf711a6b933235aa33d40841af9e0b45b1463132f61ed105c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3075277852&rft_id=info:pmid/&rfr_iscdi=true