Loading…
Unbiased evaluation of ranking algorithms applied to the Chinese green patents citation network
As a phased achievement of technological innovation, patent analysis holds extraordinary research significance. By constructing patent citation networks, scholars have proposed various centrality algorithms (such as citation count, PageRank, LeaderRank, etc.) for evaluating the quality and influence...
Saved in:
Published in: | Scientometrics 2024, Vol.129 (6), p.2999-3021 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-94861968b680c19bf711a6b933235aa33d40841af9e0b45b1463132f61ed105c3 |
container_end_page | 3021 |
container_issue | 6 |
container_start_page | 2999 |
container_title | Scientometrics |
container_volume | 129 |
creator | Liu, Xipeng Li, Xinmiao |
description | As a phased achievement of technological innovation, patent analysis holds extraordinary research significance. By constructing patent citation networks, scholars have proposed various centrality algorithms (such as citation count, PageRank, LeaderRank, etc.) for evaluating the quality and influence of patents. However, these centrality algorithms suffer from age bias, which means these algorithms are more inclined to obtain higher rankings for older patents, thus losing fairness to younger patents. Additionally, the selection of algorithm performance evaluation indicators is crucial. If the indicators are not chosen appropriately, the results may be affected. Therefore, based on the background of Chinese green patents, this paper develops an unbiased evaluation ranking algorithm to identify significant Chinese green patents earlier. The results demonstrate that the combination of the rescaled method and the AttriRank algorithm can effectively obtain the importance of patents, and provide a systematic and reasonable evaluation method for measuring patent value. |
doi_str_mv | 10.1007/s11192-024-05023-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3075277852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075277852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-94861968b680c19bf711a6b933235aa33d40841af9e0b45b1463132f61ed105c3</originalsourceid><addsrcrecordid>eNp9kDtPBCEURonRxHX1D1iRWKP3wjyY0mx8JSY2bk2YWWaWfcAIrMZ_LzomdlY053yXHEIuEa4RoL6JiNhwBrxgUAIXDI_IDEspGZcVHpMZoJCsQQGn5CzGDWRJgJwRtXSt1dGsqHnXu4NO1jvqexq021o3UL0bfLBpvY9Uj-POZjB5mtaGLtbWmWjoEIxxdNTJuBRpZ9O04Uz68GF7Tk56vYvm4vedk-X93evikT2_PDwtbp9Zx2tIrCnyN5tKtpWEDpu2rxF11TZCcFFqLcSqAFmg7hsDbVG2WFQCBe8rNCuEshNzcjXtjsG_HUxMauMPweWTSkBd8rqWJc8Un6gu-BiD6dUY7F6HT4WgvkOqKaTKIdVPSIVZEpMUM-wGE_6m_7G-AM6Bdbc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075277852</pqid></control><display><type>article</type><title>Unbiased evaluation of ranking algorithms applied to the Chinese green patents citation network</title><source>Library & Information Science Abstracts (LISA)</source><source>Springer Nature</source><creator>Liu, Xipeng ; Li, Xinmiao</creator><creatorcontrib>Liu, Xipeng ; Li, Xinmiao</creatorcontrib><description>As a phased achievement of technological innovation, patent analysis holds extraordinary research significance. By constructing patent citation networks, scholars have proposed various centrality algorithms (such as citation count, PageRank, LeaderRank, etc.) for evaluating the quality and influence of patents. However, these centrality algorithms suffer from age bias, which means these algorithms are more inclined to obtain higher rankings for older patents, thus losing fairness to younger patents. Additionally, the selection of algorithm performance evaluation indicators is crucial. If the indicators are not chosen appropriately, the results may be affected. Therefore, based on the background of Chinese green patents, this paper develops an unbiased evaluation ranking algorithm to identify significant Chinese green patents earlier. The results demonstrate that the combination of the rescaled method and the AttriRank algorithm can effectively obtain the importance of patents, and provide a systematic and reasonable evaluation method for measuring patent value.</description><identifier>ISSN: 0138-9130</identifier><identifier>EISSN: 1588-2861</identifier><identifier>DOI: 10.1007/s11192-024-05023-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Computer Science ; Indicators ; Information Storage and Retrieval ; Library Science ; Measurement methods ; Performance evaluation ; Ranking ; Search algorithms ; Technological change</subject><ispartof>Scientometrics, 2024, Vol.129 (6), p.2999-3021</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-94861968b680c19bf711a6b933235aa33d40841af9e0b45b1463132f61ed105c3</cites><orcidid>0000-0001-7558-0386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,34135</link.rule.ids></links><search><creatorcontrib>Liu, Xipeng</creatorcontrib><creatorcontrib>Li, Xinmiao</creatorcontrib><title>Unbiased evaluation of ranking algorithms applied to the Chinese green patents citation network</title><title>Scientometrics</title><addtitle>Scientometrics</addtitle><description>As a phased achievement of technological innovation, patent analysis holds extraordinary research significance. By constructing patent citation networks, scholars have proposed various centrality algorithms (such as citation count, PageRank, LeaderRank, etc.) for evaluating the quality and influence of patents. However, these centrality algorithms suffer from age bias, which means these algorithms are more inclined to obtain higher rankings for older patents, thus losing fairness to younger patents. Additionally, the selection of algorithm performance evaluation indicators is crucial. If the indicators are not chosen appropriately, the results may be affected. Therefore, based on the background of Chinese green patents, this paper develops an unbiased evaluation ranking algorithm to identify significant Chinese green patents earlier. The results demonstrate that the combination of the rescaled method and the AttriRank algorithm can effectively obtain the importance of patents, and provide a systematic and reasonable evaluation method for measuring patent value.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Indicators</subject><subject>Information Storage and Retrieval</subject><subject>Library Science</subject><subject>Measurement methods</subject><subject>Performance evaluation</subject><subject>Ranking</subject><subject>Search algorithms</subject><subject>Technological change</subject><issn>0138-9130</issn><issn>1588-2861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>F2A</sourceid><recordid>eNp9kDtPBCEURonRxHX1D1iRWKP3wjyY0mx8JSY2bk2YWWaWfcAIrMZ_LzomdlY053yXHEIuEa4RoL6JiNhwBrxgUAIXDI_IDEspGZcVHpMZoJCsQQGn5CzGDWRJgJwRtXSt1dGsqHnXu4NO1jvqexq021o3UL0bfLBpvY9Uj-POZjB5mtaGLtbWmWjoEIxxdNTJuBRpZ9O04Uz68GF7Tk56vYvm4vedk-X93evikT2_PDwtbp9Zx2tIrCnyN5tKtpWEDpu2rxF11TZCcFFqLcSqAFmg7hsDbVG2WFQCBe8rNCuEshNzcjXtjsG_HUxMauMPweWTSkBd8rqWJc8Un6gu-BiD6dUY7F6HT4WgvkOqKaTKIdVPSIVZEpMUM-wGE_6m_7G-AM6Bdbc</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Liu, Xipeng</creator><creator>Li, Xinmiao</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>E3H</scope><scope>F2A</scope><orcidid>https://orcid.org/0000-0001-7558-0386</orcidid></search><sort><creationdate>2024</creationdate><title>Unbiased evaluation of ranking algorithms applied to the Chinese green patents citation network</title><author>Liu, Xipeng ; Li, Xinmiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-94861968b680c19bf711a6b933235aa33d40841af9e0b45b1463132f61ed105c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Indicators</topic><topic>Information Storage and Retrieval</topic><topic>Library Science</topic><topic>Measurement methods</topic><topic>Performance evaluation</topic><topic>Ranking</topic><topic>Search algorithms</topic><topic>Technological change</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xipeng</creatorcontrib><creatorcontrib>Li, Xinmiao</creatorcontrib><collection>CrossRef</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><jtitle>Scientometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xipeng</au><au>Li, Xinmiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unbiased evaluation of ranking algorithms applied to the Chinese green patents citation network</atitle><jtitle>Scientometrics</jtitle><stitle>Scientometrics</stitle><date>2024</date><risdate>2024</risdate><volume>129</volume><issue>6</issue><spage>2999</spage><epage>3021</epage><pages>2999-3021</pages><issn>0138-9130</issn><eissn>1588-2861</eissn><abstract>As a phased achievement of technological innovation, patent analysis holds extraordinary research significance. By constructing patent citation networks, scholars have proposed various centrality algorithms (such as citation count, PageRank, LeaderRank, etc.) for evaluating the quality and influence of patents. However, these centrality algorithms suffer from age bias, which means these algorithms are more inclined to obtain higher rankings for older patents, thus losing fairness to younger patents. Additionally, the selection of algorithm performance evaluation indicators is crucial. If the indicators are not chosen appropriately, the results may be affected. Therefore, based on the background of Chinese green patents, this paper develops an unbiased evaluation ranking algorithm to identify significant Chinese green patents earlier. The results demonstrate that the combination of the rescaled method and the AttriRank algorithm can effectively obtain the importance of patents, and provide a systematic and reasonable evaluation method for measuring patent value.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11192-024-05023-1</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-7558-0386</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0138-9130 |
ispartof | Scientometrics, 2024, Vol.129 (6), p.2999-3021 |
issn | 0138-9130 1588-2861 |
language | eng |
recordid | cdi_proquest_journals_3075277852 |
source | Library & Information Science Abstracts (LISA); Springer Nature |
subjects | Algorithms Computer Science Indicators Information Storage and Retrieval Library Science Measurement methods Performance evaluation Ranking Search algorithms Technological change |
title | Unbiased evaluation of ranking algorithms applied to the Chinese green patents citation network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A33%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unbiased%20evaluation%20of%20ranking%20algorithms%20applied%20to%20the%20Chinese%20green%20patents%20citation%20network&rft.jtitle=Scientometrics&rft.au=Liu,%20Xipeng&rft.date=2024&rft.volume=129&rft.issue=6&rft.spage=2999&rft.epage=3021&rft.pages=2999-3021&rft.issn=0138-9130&rft.eissn=1588-2861&rft_id=info:doi/10.1007/s11192-024-05023-1&rft_dat=%3Cproquest_cross%3E3075277852%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-94861968b680c19bf711a6b933235aa33d40841af9e0b45b1463132f61ed105c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3075277852&rft_id=info:pmid/&rfr_iscdi=true |