Loading…

In-situ deposition of silver nanoparticles onto glass by non-thermal plasma jet

In this study, we employed an atmospheric-pressure non-thermal plasma jet that used silver nitrate solution as the precursor which is injected, in an aerosol state, into the plasma jet to create silver nanoparticles with the desired distribution on the glass substrate. The crystal structure and morp...

Full description

Saved in:
Bibliographic Details
Published in:The European physical journal. D, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2024-07, Vol.78 (7), Article 82
Main Authors: Abdollahi Far, Marzieh, Shariat, Mahdi, Sadeghzadeh Lari, Eshrat, Hassani Matin, Mohammad Mahdi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c210t-aeec2fe36c93d51a315f7cb3b885af401bfe69a263d97e185389175fffb53ea83
container_end_page
container_issue 7
container_start_page
container_title The European physical journal. D, Atomic, molecular, and optical physics
container_volume 78
creator Abdollahi Far, Marzieh
Shariat, Mahdi
Sadeghzadeh Lari, Eshrat
Hassani Matin, Mohammad Mahdi
description In this study, we employed an atmospheric-pressure non-thermal plasma jet that used silver nitrate solution as the precursor which is injected, in an aerosol state, into the plasma jet to create silver nanoparticles with the desired distribution on the glass substrate. The crystal structure and morphology of the Ag nanoparticles printed on the glass substrate were characterized by X-ray diffraction (XRD), the field emission scanning electron microscope (FESEM), and the atomic force microscope (AFM). The XRD patterns confirm Ag nanostructure deposition on the glass. FESEM results show that Ag nanoparticles’ are almost spherical in shape and by increasing the applied voltages, the Ag nanoparticles' size and density increases, and AFM images confirm the results of FESEM images. Rhodamine B with various concentrations was employed to determine the surface-enhanced Raman scattering (SERS) performance of Ag nanoparticles printed on the glass. It shows high sensitivity for Ag layers created by plasma to a threshold that even for the lower concentrations of 10 −10 M, Rhodamine B is still detectable. There was the optimum SERS effect at a 7 kV voltage. Also, the plasma-printed Ag layers are able to detect methylene blue, usually used as a fungicide in fish ponds and aquariums, even in low concentrations of 10 −9 M. The residual sulfur dioxide (SO 2 ) of raisins was detected using a plasma-printed silver layer. This shows the application of this plasma-printed silver layer for residual SO 2 detection in the food industry. Graphical abstract
doi_str_mv 10.1140/epjd/s10053-024-00877-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3075278041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075278041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c210t-aeec2fe36c93d51a315f7cb3b885af401bfe69a263d97e185389175fffb53ea83</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKe_wYDXcSdN06SXMvwYDHaj1yFtT2ZLl9SkE_bv7ZzopVfn5fA-58BDyC2He85zWODQNYvEAaRgkOUMQCvFyjMy47nIWQGqPP_NBVySq5Q6AMhkXszIZuVZasc9bXAIU2iDp8HR1PafGKm3Pgw2jm3dY6LBj4Fue5sSrQ7UB8_Gd4w729NhWu4s7XC8JhfO9glvfuacvD09vi5f2HrzvFo-rFmdcRiZRawzh6KoS9FIbgWXTtWVqLSW1uXAK4dFabNCNKVCrqXQJVfSOVdJgVaLObk73R1i-NhjGk0X9tFPL40AJTOlIedTS51adQwpRXRmiO3OxoPhYI72zNGeOdkzkz3zbc-UE6lPZJoIv8X4d_8_9AvolHc9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075278041</pqid></control><display><type>article</type><title>In-situ deposition of silver nanoparticles onto glass by non-thermal plasma jet</title><source>Springer Nature</source><creator>Abdollahi Far, Marzieh ; Shariat, Mahdi ; Sadeghzadeh Lari, Eshrat ; Hassani Matin, Mohammad Mahdi</creator><creatorcontrib>Abdollahi Far, Marzieh ; Shariat, Mahdi ; Sadeghzadeh Lari, Eshrat ; Hassani Matin, Mohammad Mahdi</creatorcontrib><description>In this study, we employed an atmospheric-pressure non-thermal plasma jet that used silver nitrate solution as the precursor which is injected, in an aerosol state, into the plasma jet to create silver nanoparticles with the desired distribution on the glass substrate. The crystal structure and morphology of the Ag nanoparticles printed on the glass substrate were characterized by X-ray diffraction (XRD), the field emission scanning electron microscope (FESEM), and the atomic force microscope (AFM). The XRD patterns confirm Ag nanostructure deposition on the glass. FESEM results show that Ag nanoparticles’ are almost spherical in shape and by increasing the applied voltages, the Ag nanoparticles' size and density increases, and AFM images confirm the results of FESEM images. Rhodamine B with various concentrations was employed to determine the surface-enhanced Raman scattering (SERS) performance of Ag nanoparticles printed on the glass. It shows high sensitivity for Ag layers created by plasma to a threshold that even for the lower concentrations of 10 −10 M, Rhodamine B is still detectable. There was the optimum SERS effect at a 7 kV voltage. Also, the plasma-printed Ag layers are able to detect methylene blue, usually used as a fungicide in fish ponds and aquariums, even in low concentrations of 10 −9 M. The residual sulfur dioxide (SO 2 ) of raisins was detected using a plasma-printed silver layer. This shows the application of this plasma-printed silver layer for residual SO 2 detection in the food industry. Graphical abstract</description><identifier>ISSN: 1434-6060</identifier><identifier>EISSN: 1434-6079</identifier><identifier>DOI: 10.1140/epjd/s10053-024-00877-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Nonlinear Dynamics and Chaos Theory ; Aquariums ; Atomic ; Crystal structure ; Deposition ; Field emission ; Fungicides ; Glass substrates ; Low concentrations ; Low Temperature Plasmas: Processes and Diagnostics for Future Applications ; Methylene blue ; Molecular ; Nanoparticles ; Optical and Plasma Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Plasma ; Plasma jets ; Quantum Information Technology ; Quantum Physics ; Raisins ; Raman spectra ; Regular Article ; Rhodamine ; Silver ; Silver nitrate ; Spectroscopy/Spectrometry ; Spintronics ; Sulfur dioxide ; Thermal plasmas ; X-ray diffraction</subject><ispartof>The European physical journal. D, Atomic, molecular, and optical physics, 2024-07, Vol.78 (7), Article 82</ispartof><rights>The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c210t-aeec2fe36c93d51a315f7cb3b885af401bfe69a263d97e185389175fffb53ea83</cites><orcidid>0000-0002-8057-0032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Abdollahi Far, Marzieh</creatorcontrib><creatorcontrib>Shariat, Mahdi</creatorcontrib><creatorcontrib>Sadeghzadeh Lari, Eshrat</creatorcontrib><creatorcontrib>Hassani Matin, Mohammad Mahdi</creatorcontrib><title>In-situ deposition of silver nanoparticles onto glass by non-thermal plasma jet</title><title>The European physical journal. D, Atomic, molecular, and optical physics</title><addtitle>Eur. Phys. J. D</addtitle><description>In this study, we employed an atmospheric-pressure non-thermal plasma jet that used silver nitrate solution as the precursor which is injected, in an aerosol state, into the plasma jet to create silver nanoparticles with the desired distribution on the glass substrate. The crystal structure and morphology of the Ag nanoparticles printed on the glass substrate were characterized by X-ray diffraction (XRD), the field emission scanning electron microscope (FESEM), and the atomic force microscope (AFM). The XRD patterns confirm Ag nanostructure deposition on the glass. FESEM results show that Ag nanoparticles’ are almost spherical in shape and by increasing the applied voltages, the Ag nanoparticles' size and density increases, and AFM images confirm the results of FESEM images. Rhodamine B with various concentrations was employed to determine the surface-enhanced Raman scattering (SERS) performance of Ag nanoparticles printed on the glass. It shows high sensitivity for Ag layers created by plasma to a threshold that even for the lower concentrations of 10 −10 M, Rhodamine B is still detectable. There was the optimum SERS effect at a 7 kV voltage. Also, the plasma-printed Ag layers are able to detect methylene blue, usually used as a fungicide in fish ponds and aquariums, even in low concentrations of 10 −9 M. The residual sulfur dioxide (SO 2 ) of raisins was detected using a plasma-printed silver layer. This shows the application of this plasma-printed silver layer for residual SO 2 detection in the food industry. Graphical abstract</description><subject>Applications of Nonlinear Dynamics and Chaos Theory</subject><subject>Aquariums</subject><subject>Atomic</subject><subject>Crystal structure</subject><subject>Deposition</subject><subject>Field emission</subject><subject>Fungicides</subject><subject>Glass substrates</subject><subject>Low concentrations</subject><subject>Low Temperature Plasmas: Processes and Diagnostics for Future Applications</subject><subject>Methylene blue</subject><subject>Molecular</subject><subject>Nanoparticles</subject><subject>Optical and Plasma Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plasma</subject><subject>Plasma jets</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Raisins</subject><subject>Raman spectra</subject><subject>Regular Article</subject><subject>Rhodamine</subject><subject>Silver</subject><subject>Silver nitrate</subject><subject>Spectroscopy/Spectrometry</subject><subject>Spintronics</subject><subject>Sulfur dioxide</subject><subject>Thermal plasmas</subject><subject>X-ray diffraction</subject><issn>1434-6060</issn><issn>1434-6079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhoMoOKe_wYDXcSdN06SXMvwYDHaj1yFtT2ZLl9SkE_bv7ZzopVfn5fA-58BDyC2He85zWODQNYvEAaRgkOUMQCvFyjMy47nIWQGqPP_NBVySq5Q6AMhkXszIZuVZasc9bXAIU2iDp8HR1PafGKm3Pgw2jm3dY6LBj4Fue5sSrQ7UB8_Gd4w729NhWu4s7XC8JhfO9glvfuacvD09vi5f2HrzvFo-rFmdcRiZRawzh6KoS9FIbgWXTtWVqLSW1uXAK4dFabNCNKVCrqXQJVfSOVdJgVaLObk73R1i-NhjGk0X9tFPL40AJTOlIedTS51adQwpRXRmiO3OxoPhYI72zNGeOdkzkz3zbc-UE6lPZJoIv8X4d_8_9AvolHc9</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Abdollahi Far, Marzieh</creator><creator>Shariat, Mahdi</creator><creator>Sadeghzadeh Lari, Eshrat</creator><creator>Hassani Matin, Mohammad Mahdi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8057-0032</orcidid></search><sort><creationdate>20240701</creationdate><title>In-situ deposition of silver nanoparticles onto glass by non-thermal plasma jet</title><author>Abdollahi Far, Marzieh ; Shariat, Mahdi ; Sadeghzadeh Lari, Eshrat ; Hassani Matin, Mohammad Mahdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c210t-aeec2fe36c93d51a315f7cb3b885af401bfe69a263d97e185389175fffb53ea83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications of Nonlinear Dynamics and Chaos Theory</topic><topic>Aquariums</topic><topic>Atomic</topic><topic>Crystal structure</topic><topic>Deposition</topic><topic>Field emission</topic><topic>Fungicides</topic><topic>Glass substrates</topic><topic>Low concentrations</topic><topic>Low Temperature Plasmas: Processes and Diagnostics for Future Applications</topic><topic>Methylene blue</topic><topic>Molecular</topic><topic>Nanoparticles</topic><topic>Optical and Plasma Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plasma</topic><topic>Plasma jets</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Raisins</topic><topic>Raman spectra</topic><topic>Regular Article</topic><topic>Rhodamine</topic><topic>Silver</topic><topic>Silver nitrate</topic><topic>Spectroscopy/Spectrometry</topic><topic>Spintronics</topic><topic>Sulfur dioxide</topic><topic>Thermal plasmas</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdollahi Far, Marzieh</creatorcontrib><creatorcontrib>Shariat, Mahdi</creatorcontrib><creatorcontrib>Sadeghzadeh Lari, Eshrat</creatorcontrib><creatorcontrib>Hassani Matin, Mohammad Mahdi</creatorcontrib><collection>CrossRef</collection><jtitle>The European physical journal. D, Atomic, molecular, and optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdollahi Far, Marzieh</au><au>Shariat, Mahdi</au><au>Sadeghzadeh Lari, Eshrat</au><au>Hassani Matin, Mohammad Mahdi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-situ deposition of silver nanoparticles onto glass by non-thermal plasma jet</atitle><jtitle>The European physical journal. D, Atomic, molecular, and optical physics</jtitle><stitle>Eur. Phys. J. D</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>78</volume><issue>7</issue><artnum>82</artnum><issn>1434-6060</issn><eissn>1434-6079</eissn><abstract>In this study, we employed an atmospheric-pressure non-thermal plasma jet that used silver nitrate solution as the precursor which is injected, in an aerosol state, into the plasma jet to create silver nanoparticles with the desired distribution on the glass substrate. The crystal structure and morphology of the Ag nanoparticles printed on the glass substrate were characterized by X-ray diffraction (XRD), the field emission scanning electron microscope (FESEM), and the atomic force microscope (AFM). The XRD patterns confirm Ag nanostructure deposition on the glass. FESEM results show that Ag nanoparticles’ are almost spherical in shape and by increasing the applied voltages, the Ag nanoparticles' size and density increases, and AFM images confirm the results of FESEM images. Rhodamine B with various concentrations was employed to determine the surface-enhanced Raman scattering (SERS) performance of Ag nanoparticles printed on the glass. It shows high sensitivity for Ag layers created by plasma to a threshold that even for the lower concentrations of 10 −10 M, Rhodamine B is still detectable. There was the optimum SERS effect at a 7 kV voltage. Also, the plasma-printed Ag layers are able to detect methylene blue, usually used as a fungicide in fish ponds and aquariums, even in low concentrations of 10 −9 M. The residual sulfur dioxide (SO 2 ) of raisins was detected using a plasma-printed silver layer. This shows the application of this plasma-printed silver layer for residual SO 2 detection in the food industry. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjd/s10053-024-00877-9</doi><orcidid>https://orcid.org/0000-0002-8057-0032</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1434-6060
ispartof The European physical journal. D, Atomic, molecular, and optical physics, 2024-07, Vol.78 (7), Article 82
issn 1434-6060
1434-6079
language eng
recordid cdi_proquest_journals_3075278041
source Springer Nature
subjects Applications of Nonlinear Dynamics and Chaos Theory
Aquariums
Atomic
Crystal structure
Deposition
Field emission
Fungicides
Glass substrates
Low concentrations
Low Temperature Plasmas: Processes and Diagnostics for Future Applications
Methylene blue
Molecular
Nanoparticles
Optical and Plasma Physics
Physical Chemistry
Physics
Physics and Astronomy
Plasma
Plasma jets
Quantum Information Technology
Quantum Physics
Raisins
Raman spectra
Regular Article
Rhodamine
Silver
Silver nitrate
Spectroscopy/Spectrometry
Spintronics
Sulfur dioxide
Thermal plasmas
X-ray diffraction
title In-situ deposition of silver nanoparticles onto glass by non-thermal plasma jet
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A39%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-situ%20deposition%20of%20silver%20nanoparticles%20onto%20glass%20by%20non-thermal%20plasma%20jet&rft.jtitle=The%20European%20physical%20journal.%20D,%20Atomic,%20molecular,%20and%20optical%20physics&rft.au=Abdollahi%20Far,%20Marzieh&rft.date=2024-07-01&rft.volume=78&rft.issue=7&rft.artnum=82&rft.issn=1434-6060&rft.eissn=1434-6079&rft_id=info:doi/10.1140/epjd/s10053-024-00877-9&rft_dat=%3Cproquest_cross%3E3075278041%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c210t-aeec2fe36c93d51a315f7cb3b885af401bfe69a263d97e185389175fffb53ea83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3075278041&rft_id=info:pmid/&rfr_iscdi=true