Loading…

3D Virtual Histopathology by Phase-Contrast X-Ray Micro-CT for Follicular Thyroid Neoplasms

Histological analysis is the core of follicular thyroid carcinoma (FTC) classification. The histopathological criteria of capsular and vascular invasion define malignancy and aggressiveness of FTC. Analysis of multiple sections is cumbersome and as only a minute tissue fraction is analyzed during hi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging 2024-07, Vol.43 (7), p.2670-2678
Main Authors: Tajbakhsh, Kiarash, Stanowska, Olga, Neels, Antonia, Perren, Aurel, Zboray, Robert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Histological analysis is the core of follicular thyroid carcinoma (FTC) classification. The histopathological criteria of capsular and vascular invasion define malignancy and aggressiveness of FTC. Analysis of multiple sections is cumbersome and as only a minute tissue fraction is analyzed during histopathology, under-sampling remains a problem. Application of an efficient tool for complete tissue imaging in 3D would speed-up diagnosis and increase accuracy. We show that X-ray propagation-based imaging (XPBI) of paraffin-embedded tissue blocks is a valuable complementary method for follicular thyroid carcinoma diagnosis and assessment. It enables a fast, non-destructive and accurate 3D virtual histology of the FTC resection specimen. We demonstrate that XPBI virtual slices can reliably evaluate capsular invasions. Then we discuss the accessible morphological information from XPBI and their significance for vascular invasion diagnosis. We show 3D morphological information that allow to discern vascular invasions. The results are validated by comparing XPBI images with clinically accepted histology slides revised by and under supervision of two experienced endocrine pathologists.
ISSN:0278-0062
1558-254X
1558-254X
DOI:10.1109/TMI.2024.3372602