Loading…
3D Virtual Histopathology by Phase-Contrast X-Ray Micro-CT for Follicular Thyroid Neoplasms
Histological analysis is the core of follicular thyroid carcinoma (FTC) classification. The histopathological criteria of capsular and vascular invasion define malignancy and aggressiveness of FTC. Analysis of multiple sections is cumbersome and as only a minute tissue fraction is analyzed during hi...
Saved in:
Published in: | IEEE transactions on medical imaging 2024-07, Vol.43 (7), p.2670-2678 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c390t-88f3d9d1e8510ee9777d76199dc19174b019475467bf8f37b6e4c052bc0f37a03 |
---|---|
cites | cdi_FETCH-LOGICAL-c390t-88f3d9d1e8510ee9777d76199dc19174b019475467bf8f37b6e4c052bc0f37a03 |
container_end_page | 2678 |
container_issue | 7 |
container_start_page | 2670 |
container_title | IEEE transactions on medical imaging |
container_volume | 43 |
creator | Tajbakhsh, Kiarash Stanowska, Olga Neels, Antonia Perren, Aurel Zboray, Robert |
description | Histological analysis is the core of follicular thyroid carcinoma (FTC) classification. The histopathological criteria of capsular and vascular invasion define malignancy and aggressiveness of FTC. Analysis of multiple sections is cumbersome and as only a minute tissue fraction is analyzed during histopathology, under-sampling remains a problem. Application of an efficient tool for complete tissue imaging in 3D would speed-up diagnosis and increase accuracy. We show that X-ray propagation-based imaging (XPBI) of paraffin-embedded tissue blocks is a valuable complementary method for follicular thyroid carcinoma diagnosis and assessment. It enables a fast, non-destructive and accurate 3D virtual histology of the FTC resection specimen. We demonstrate that XPBI virtual slices can reliably evaluate capsular invasions. Then we discuss the accessible morphological information from XPBI and their significance for vascular invasion diagnosis. We show 3D morphological information that allow to discern vascular invasions. The results are validated by comparing XPBI images with clinically accepted histology slides revised by and under supervision of two experienced endocrine pathologists. |
doi_str_mv | 10.1109/TMI.2024.3372602 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_3075416987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10458694</ieee_id><sourcerecordid>2937702130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-88f3d9d1e8510ee9777d76199dc19174b019475467bf8f37b6e4c052bc0f37a03</originalsourceid><addsrcrecordid>eNpdkE1PGzEQhi1URELg3kOFLHHpZcP4a70-VqGUSIRWKK2QOFjeXS9Z5MTB3j3sv8dRUoQ4jUZ65p2ZB6GvBKaEgLpaLuZTCpRPGZM0B3qExkSIIqOCP35BY6CyyAByOkKnMb4AEC5AnaARKziTRMAYPbFr_K8NXW8cvm1j57emW3nnnwdcDvjPykSbzfymCyZ2-DF7MANetFXw2WyJGx_wjXeurXpnAl6uhuDbGt9bv3UmruMZOm6Mi_b8UCfo783P5ew2u_v9az77cZdVTEGXFUXDalUTWwgC1iopZS1zolRdEUUkL4EoLgXPZdkkVJa55RUIWlaQOgNsgr7vc7fBv_Y2dnrdxso6ZzbW91FTxaQEStgOvfyEvvg-bNJ1mkHaQXJVyETBnkqPxhhso7ehXZswaAJ6J14n8XonXh_Ep5GLQ3Bfrm39PvDfdAK-7YHWWvshj4siV5y9AUNthQc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075416987</pqid></control><display><type>article</type><title>3D Virtual Histopathology by Phase-Contrast X-Ray Micro-CT for Follicular Thyroid Neoplasms</title><source>IEEE Xplore (Online service)</source><creator>Tajbakhsh, Kiarash ; Stanowska, Olga ; Neels, Antonia ; Perren, Aurel ; Zboray, Robert</creator><creatorcontrib>Tajbakhsh, Kiarash ; Stanowska, Olga ; Neels, Antonia ; Perren, Aurel ; Zboray, Robert</creatorcontrib><description>Histological analysis is the core of follicular thyroid carcinoma (FTC) classification. The histopathological criteria of capsular and vascular invasion define malignancy and aggressiveness of FTC. Analysis of multiple sections is cumbersome and as only a minute tissue fraction is analyzed during histopathology, under-sampling remains a problem. Application of an efficient tool for complete tissue imaging in 3D would speed-up diagnosis and increase accuracy. We show that X-ray propagation-based imaging (XPBI) of paraffin-embedded tissue blocks is a valuable complementary method for follicular thyroid carcinoma diagnosis and assessment. It enables a fast, non-destructive and accurate 3D virtual histology of the FTC resection specimen. We demonstrate that XPBI virtual slices can reliably evaluate capsular invasions. Then we discuss the accessible morphological information from XPBI and their significance for vascular invasion diagnosis. We show 3D morphological information that allow to discern vascular invasions. The results are validated by comparing XPBI images with clinically accepted histology slides revised by and under supervision of two experienced endocrine pathologists.</description><identifier>ISSN: 0278-0062</identifier><identifier>ISSN: 1558-254X</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2024.3372602</identifier><identifier>PMID: 38437150</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>3D virtual histology ; Computed tomography ; Diagnosis ; Electron tubes ; Histology ; Histopathology ; Imaging ; Invasions ; Malignancy ; Medical imaging ; Morphology ; Neoplasms ; Nondestructive testing ; phase-contrast X-ray imaging ; precision medicine ; propagation-based imaging ; Three-dimensional displays ; Thyroid ; Thyroid cancer ; Thyroid carcinoma ; Thyroid neoplasm ; X ray imagery ; X-ray imaging</subject><ispartof>IEEE transactions on medical imaging, 2024-07, Vol.43 (7), p.2670-2678</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-88f3d9d1e8510ee9777d76199dc19174b019475467bf8f37b6e4c052bc0f37a03</citedby><cites>FETCH-LOGICAL-c390t-88f3d9d1e8510ee9777d76199dc19174b019475467bf8f37b6e4c052bc0f37a03</cites><orcidid>0000-0002-0081-8908 ; 0000-0002-6819-6092 ; 0000-0001-5752-2852 ; 0000-0001-8014-882X ; 0000-0003-0811-7396</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10458694$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38437150$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tajbakhsh, Kiarash</creatorcontrib><creatorcontrib>Stanowska, Olga</creatorcontrib><creatorcontrib>Neels, Antonia</creatorcontrib><creatorcontrib>Perren, Aurel</creatorcontrib><creatorcontrib>Zboray, Robert</creatorcontrib><title>3D Virtual Histopathology by Phase-Contrast X-Ray Micro-CT for Follicular Thyroid Neoplasms</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Histological analysis is the core of follicular thyroid carcinoma (FTC) classification. The histopathological criteria of capsular and vascular invasion define malignancy and aggressiveness of FTC. Analysis of multiple sections is cumbersome and as only a minute tissue fraction is analyzed during histopathology, under-sampling remains a problem. Application of an efficient tool for complete tissue imaging in 3D would speed-up diagnosis and increase accuracy. We show that X-ray propagation-based imaging (XPBI) of paraffin-embedded tissue blocks is a valuable complementary method for follicular thyroid carcinoma diagnosis and assessment. It enables a fast, non-destructive and accurate 3D virtual histology of the FTC resection specimen. We demonstrate that XPBI virtual slices can reliably evaluate capsular invasions. Then we discuss the accessible morphological information from XPBI and their significance for vascular invasion diagnosis. We show 3D morphological information that allow to discern vascular invasions. The results are validated by comparing XPBI images with clinically accepted histology slides revised by and under supervision of two experienced endocrine pathologists.</description><subject>3D virtual histology</subject><subject>Computed tomography</subject><subject>Diagnosis</subject><subject>Electron tubes</subject><subject>Histology</subject><subject>Histopathology</subject><subject>Imaging</subject><subject>Invasions</subject><subject>Malignancy</subject><subject>Medical imaging</subject><subject>Morphology</subject><subject>Neoplasms</subject><subject>Nondestructive testing</subject><subject>phase-contrast X-ray imaging</subject><subject>precision medicine</subject><subject>propagation-based imaging</subject><subject>Three-dimensional displays</subject><subject>Thyroid</subject><subject>Thyroid cancer</subject><subject>Thyroid carcinoma</subject><subject>Thyroid neoplasm</subject><subject>X ray imagery</subject><subject>X-ray imaging</subject><issn>0278-0062</issn><issn>1558-254X</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkE1PGzEQhi1URELg3kOFLHHpZcP4a70-VqGUSIRWKK2QOFjeXS9Z5MTB3j3sv8dRUoQ4jUZ65p2ZB6GvBKaEgLpaLuZTCpRPGZM0B3qExkSIIqOCP35BY6CyyAByOkKnMb4AEC5AnaARKziTRMAYPbFr_K8NXW8cvm1j57emW3nnnwdcDvjPykSbzfymCyZ2-DF7MANetFXw2WyJGx_wjXeurXpnAl6uhuDbGt9bv3UmruMZOm6Mi_b8UCfo783P5ew2u_v9az77cZdVTEGXFUXDalUTWwgC1iopZS1zolRdEUUkL4EoLgXPZdkkVJa55RUIWlaQOgNsgr7vc7fBv_Y2dnrdxso6ZzbW91FTxaQEStgOvfyEvvg-bNJ1mkHaQXJVyETBnkqPxhhso7ehXZswaAJ6J14n8XonXh_Ep5GLQ3Bfrm39PvDfdAK-7YHWWvshj4siV5y9AUNthQc</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Tajbakhsh, Kiarash</creator><creator>Stanowska, Olga</creator><creator>Neels, Antonia</creator><creator>Perren, Aurel</creator><creator>Zboray, Robert</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0081-8908</orcidid><orcidid>https://orcid.org/0000-0002-6819-6092</orcidid><orcidid>https://orcid.org/0000-0001-5752-2852</orcidid><orcidid>https://orcid.org/0000-0001-8014-882X</orcidid><orcidid>https://orcid.org/0000-0003-0811-7396</orcidid></search><sort><creationdate>20240701</creationdate><title>3D Virtual Histopathology by Phase-Contrast X-Ray Micro-CT for Follicular Thyroid Neoplasms</title><author>Tajbakhsh, Kiarash ; Stanowska, Olga ; Neels, Antonia ; Perren, Aurel ; Zboray, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-88f3d9d1e8510ee9777d76199dc19174b019475467bf8f37b6e4c052bc0f37a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D virtual histology</topic><topic>Computed tomography</topic><topic>Diagnosis</topic><topic>Electron tubes</topic><topic>Histology</topic><topic>Histopathology</topic><topic>Imaging</topic><topic>Invasions</topic><topic>Malignancy</topic><topic>Medical imaging</topic><topic>Morphology</topic><topic>Neoplasms</topic><topic>Nondestructive testing</topic><topic>phase-contrast X-ray imaging</topic><topic>precision medicine</topic><topic>propagation-based imaging</topic><topic>Three-dimensional displays</topic><topic>Thyroid</topic><topic>Thyroid cancer</topic><topic>Thyroid carcinoma</topic><topic>Thyroid neoplasm</topic><topic>X ray imagery</topic><topic>X-ray imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Tajbakhsh, Kiarash</creatorcontrib><creatorcontrib>Stanowska, Olga</creatorcontrib><creatorcontrib>Neels, Antonia</creatorcontrib><creatorcontrib>Perren, Aurel</creatorcontrib><creatorcontrib>Zboray, Robert</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tajbakhsh, Kiarash</au><au>Stanowska, Olga</au><au>Neels, Antonia</au><au>Perren, Aurel</au><au>Zboray, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Virtual Histopathology by Phase-Contrast X-Ray Micro-CT for Follicular Thyroid Neoplasms</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>43</volume><issue>7</issue><spage>2670</spage><epage>2678</epage><pages>2670-2678</pages><issn>0278-0062</issn><issn>1558-254X</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Histological analysis is the core of follicular thyroid carcinoma (FTC) classification. The histopathological criteria of capsular and vascular invasion define malignancy and aggressiveness of FTC. Analysis of multiple sections is cumbersome and as only a minute tissue fraction is analyzed during histopathology, under-sampling remains a problem. Application of an efficient tool for complete tissue imaging in 3D would speed-up diagnosis and increase accuracy. We show that X-ray propagation-based imaging (XPBI) of paraffin-embedded tissue blocks is a valuable complementary method for follicular thyroid carcinoma diagnosis and assessment. It enables a fast, non-destructive and accurate 3D virtual histology of the FTC resection specimen. We demonstrate that XPBI virtual slices can reliably evaluate capsular invasions. Then we discuss the accessible morphological information from XPBI and their significance for vascular invasion diagnosis. We show 3D morphological information that allow to discern vascular invasions. The results are validated by comparing XPBI images with clinically accepted histology slides revised by and under supervision of two experienced endocrine pathologists.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38437150</pmid><doi>10.1109/TMI.2024.3372602</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0081-8908</orcidid><orcidid>https://orcid.org/0000-0002-6819-6092</orcidid><orcidid>https://orcid.org/0000-0001-5752-2852</orcidid><orcidid>https://orcid.org/0000-0001-8014-882X</orcidid><orcidid>https://orcid.org/0000-0003-0811-7396</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2024-07, Vol.43 (7), p.2670-2678 |
issn | 0278-0062 1558-254X 1558-254X |
language | eng |
recordid | cdi_proquest_journals_3075416987 |
source | IEEE Xplore (Online service) |
subjects | 3D virtual histology Computed tomography Diagnosis Electron tubes Histology Histopathology Imaging Invasions Malignancy Medical imaging Morphology Neoplasms Nondestructive testing phase-contrast X-ray imaging precision medicine propagation-based imaging Three-dimensional displays Thyroid Thyroid cancer Thyroid carcinoma Thyroid neoplasm X ray imagery X-ray imaging |
title | 3D Virtual Histopathology by Phase-Contrast X-Ray Micro-CT for Follicular Thyroid Neoplasms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Virtual%20Histopathology%20by%20Phase-Contrast%20X-Ray%20Micro-CT%20for%20Follicular%20Thyroid%20Neoplasms&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Tajbakhsh,%20Kiarash&rft.date=2024-07-01&rft.volume=43&rft.issue=7&rft.spage=2670&rft.epage=2678&rft.pages=2670-2678&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2024.3372602&rft_dat=%3Cproquest_pubme%3E2937702130%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-88f3d9d1e8510ee9777d76199dc19174b019475467bf8f37b6e4c052bc0f37a03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3075416987&rft_id=info:pmid/38437150&rft_ieee_id=10458694&rfr_iscdi=true |