Loading…

3D Virtual Histopathology by Phase-Contrast X-Ray Micro-CT for Follicular Thyroid Neoplasms

Histological analysis is the core of follicular thyroid carcinoma (FTC) classification. The histopathological criteria of capsular and vascular invasion define malignancy and aggressiveness of FTC. Analysis of multiple sections is cumbersome and as only a minute tissue fraction is analyzed during hi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging 2024-07, Vol.43 (7), p.2670-2678
Main Authors: Tajbakhsh, Kiarash, Stanowska, Olga, Neels, Antonia, Perren, Aurel, Zboray, Robert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c390t-88f3d9d1e8510ee9777d76199dc19174b019475467bf8f37b6e4c052bc0f37a03
cites cdi_FETCH-LOGICAL-c390t-88f3d9d1e8510ee9777d76199dc19174b019475467bf8f37b6e4c052bc0f37a03
container_end_page 2678
container_issue 7
container_start_page 2670
container_title IEEE transactions on medical imaging
container_volume 43
creator Tajbakhsh, Kiarash
Stanowska, Olga
Neels, Antonia
Perren, Aurel
Zboray, Robert
description Histological analysis is the core of follicular thyroid carcinoma (FTC) classification. The histopathological criteria of capsular and vascular invasion define malignancy and aggressiveness of FTC. Analysis of multiple sections is cumbersome and as only a minute tissue fraction is analyzed during histopathology, under-sampling remains a problem. Application of an efficient tool for complete tissue imaging in 3D would speed-up diagnosis and increase accuracy. We show that X-ray propagation-based imaging (XPBI) of paraffin-embedded tissue blocks is a valuable complementary method for follicular thyroid carcinoma diagnosis and assessment. It enables a fast, non-destructive and accurate 3D virtual histology of the FTC resection specimen. We demonstrate that XPBI virtual slices can reliably evaluate capsular invasions. Then we discuss the accessible morphological information from XPBI and their significance for vascular invasion diagnosis. We show 3D morphological information that allow to discern vascular invasions. The results are validated by comparing XPBI images with clinically accepted histology slides revised by and under supervision of two experienced endocrine pathologists.
doi_str_mv 10.1109/TMI.2024.3372602
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_3075416987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10458694</ieee_id><sourcerecordid>2937702130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-88f3d9d1e8510ee9777d76199dc19174b019475467bf8f37b6e4c052bc0f37a03</originalsourceid><addsrcrecordid>eNpdkE1PGzEQhi1URELg3kOFLHHpZcP4a70-VqGUSIRWKK2QOFjeXS9Z5MTB3j3sv8dRUoQ4jUZ65p2ZB6GvBKaEgLpaLuZTCpRPGZM0B3qExkSIIqOCP35BY6CyyAByOkKnMb4AEC5AnaARKziTRMAYPbFr_K8NXW8cvm1j57emW3nnnwdcDvjPykSbzfymCyZ2-DF7MANetFXw2WyJGx_wjXeurXpnAl6uhuDbGt9bv3UmruMZOm6Mi_b8UCfo783P5ew2u_v9az77cZdVTEGXFUXDalUTWwgC1iopZS1zolRdEUUkL4EoLgXPZdkkVJa55RUIWlaQOgNsgr7vc7fBv_Y2dnrdxso6ZzbW91FTxaQEStgOvfyEvvg-bNJ1mkHaQXJVyETBnkqPxhhso7ehXZswaAJ6J14n8XonXh_Ep5GLQ3Bfrm39PvDfdAK-7YHWWvshj4siV5y9AUNthQc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075416987</pqid></control><display><type>article</type><title>3D Virtual Histopathology by Phase-Contrast X-Ray Micro-CT for Follicular Thyroid Neoplasms</title><source>IEEE Xplore (Online service)</source><creator>Tajbakhsh, Kiarash ; Stanowska, Olga ; Neels, Antonia ; Perren, Aurel ; Zboray, Robert</creator><creatorcontrib>Tajbakhsh, Kiarash ; Stanowska, Olga ; Neels, Antonia ; Perren, Aurel ; Zboray, Robert</creatorcontrib><description>Histological analysis is the core of follicular thyroid carcinoma (FTC) classification. The histopathological criteria of capsular and vascular invasion define malignancy and aggressiveness of FTC. Analysis of multiple sections is cumbersome and as only a minute tissue fraction is analyzed during histopathology, under-sampling remains a problem. Application of an efficient tool for complete tissue imaging in 3D would speed-up diagnosis and increase accuracy. We show that X-ray propagation-based imaging (XPBI) of paraffin-embedded tissue blocks is a valuable complementary method for follicular thyroid carcinoma diagnosis and assessment. It enables a fast, non-destructive and accurate 3D virtual histology of the FTC resection specimen. We demonstrate that XPBI virtual slices can reliably evaluate capsular invasions. Then we discuss the accessible morphological information from XPBI and their significance for vascular invasion diagnosis. We show 3D morphological information that allow to discern vascular invasions. The results are validated by comparing XPBI images with clinically accepted histology slides revised by and under supervision of two experienced endocrine pathologists.</description><identifier>ISSN: 0278-0062</identifier><identifier>ISSN: 1558-254X</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2024.3372602</identifier><identifier>PMID: 38437150</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>3D virtual histology ; Computed tomography ; Diagnosis ; Electron tubes ; Histology ; Histopathology ; Imaging ; Invasions ; Malignancy ; Medical imaging ; Morphology ; Neoplasms ; Nondestructive testing ; phase-contrast X-ray imaging ; precision medicine ; propagation-based imaging ; Three-dimensional displays ; Thyroid ; Thyroid cancer ; Thyroid carcinoma ; Thyroid neoplasm ; X ray imagery ; X-ray imaging</subject><ispartof>IEEE transactions on medical imaging, 2024-07, Vol.43 (7), p.2670-2678</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-88f3d9d1e8510ee9777d76199dc19174b019475467bf8f37b6e4c052bc0f37a03</citedby><cites>FETCH-LOGICAL-c390t-88f3d9d1e8510ee9777d76199dc19174b019475467bf8f37b6e4c052bc0f37a03</cites><orcidid>0000-0002-0081-8908 ; 0000-0002-6819-6092 ; 0000-0001-5752-2852 ; 0000-0001-8014-882X ; 0000-0003-0811-7396</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10458694$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38437150$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tajbakhsh, Kiarash</creatorcontrib><creatorcontrib>Stanowska, Olga</creatorcontrib><creatorcontrib>Neels, Antonia</creatorcontrib><creatorcontrib>Perren, Aurel</creatorcontrib><creatorcontrib>Zboray, Robert</creatorcontrib><title>3D Virtual Histopathology by Phase-Contrast X-Ray Micro-CT for Follicular Thyroid Neoplasms</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Histological analysis is the core of follicular thyroid carcinoma (FTC) classification. The histopathological criteria of capsular and vascular invasion define malignancy and aggressiveness of FTC. Analysis of multiple sections is cumbersome and as only a minute tissue fraction is analyzed during histopathology, under-sampling remains a problem. Application of an efficient tool for complete tissue imaging in 3D would speed-up diagnosis and increase accuracy. We show that X-ray propagation-based imaging (XPBI) of paraffin-embedded tissue blocks is a valuable complementary method for follicular thyroid carcinoma diagnosis and assessment. It enables a fast, non-destructive and accurate 3D virtual histology of the FTC resection specimen. We demonstrate that XPBI virtual slices can reliably evaluate capsular invasions. Then we discuss the accessible morphological information from XPBI and their significance for vascular invasion diagnosis. We show 3D morphological information that allow to discern vascular invasions. The results are validated by comparing XPBI images with clinically accepted histology slides revised by and under supervision of two experienced endocrine pathologists.</description><subject>3D virtual histology</subject><subject>Computed tomography</subject><subject>Diagnosis</subject><subject>Electron tubes</subject><subject>Histology</subject><subject>Histopathology</subject><subject>Imaging</subject><subject>Invasions</subject><subject>Malignancy</subject><subject>Medical imaging</subject><subject>Morphology</subject><subject>Neoplasms</subject><subject>Nondestructive testing</subject><subject>phase-contrast X-ray imaging</subject><subject>precision medicine</subject><subject>propagation-based imaging</subject><subject>Three-dimensional displays</subject><subject>Thyroid</subject><subject>Thyroid cancer</subject><subject>Thyroid carcinoma</subject><subject>Thyroid neoplasm</subject><subject>X ray imagery</subject><subject>X-ray imaging</subject><issn>0278-0062</issn><issn>1558-254X</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkE1PGzEQhi1URELg3kOFLHHpZcP4a70-VqGUSIRWKK2QOFjeXS9Z5MTB3j3sv8dRUoQ4jUZ65p2ZB6GvBKaEgLpaLuZTCpRPGZM0B3qExkSIIqOCP35BY6CyyAByOkKnMb4AEC5AnaARKziTRMAYPbFr_K8NXW8cvm1j57emW3nnnwdcDvjPykSbzfymCyZ2-DF7MANetFXw2WyJGx_wjXeurXpnAl6uhuDbGt9bv3UmruMZOm6Mi_b8UCfo783P5ew2u_v9az77cZdVTEGXFUXDalUTWwgC1iopZS1zolRdEUUkL4EoLgXPZdkkVJa55RUIWlaQOgNsgr7vc7fBv_Y2dnrdxso6ZzbW91FTxaQEStgOvfyEvvg-bNJ1mkHaQXJVyETBnkqPxhhso7ehXZswaAJ6J14n8XonXh_Ep5GLQ3Bfrm39PvDfdAK-7YHWWvshj4siV5y9AUNthQc</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Tajbakhsh, Kiarash</creator><creator>Stanowska, Olga</creator><creator>Neels, Antonia</creator><creator>Perren, Aurel</creator><creator>Zboray, Robert</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0081-8908</orcidid><orcidid>https://orcid.org/0000-0002-6819-6092</orcidid><orcidid>https://orcid.org/0000-0001-5752-2852</orcidid><orcidid>https://orcid.org/0000-0001-8014-882X</orcidid><orcidid>https://orcid.org/0000-0003-0811-7396</orcidid></search><sort><creationdate>20240701</creationdate><title>3D Virtual Histopathology by Phase-Contrast X-Ray Micro-CT for Follicular Thyroid Neoplasms</title><author>Tajbakhsh, Kiarash ; Stanowska, Olga ; Neels, Antonia ; Perren, Aurel ; Zboray, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-88f3d9d1e8510ee9777d76199dc19174b019475467bf8f37b6e4c052bc0f37a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D virtual histology</topic><topic>Computed tomography</topic><topic>Diagnosis</topic><topic>Electron tubes</topic><topic>Histology</topic><topic>Histopathology</topic><topic>Imaging</topic><topic>Invasions</topic><topic>Malignancy</topic><topic>Medical imaging</topic><topic>Morphology</topic><topic>Neoplasms</topic><topic>Nondestructive testing</topic><topic>phase-contrast X-ray imaging</topic><topic>precision medicine</topic><topic>propagation-based imaging</topic><topic>Three-dimensional displays</topic><topic>Thyroid</topic><topic>Thyroid cancer</topic><topic>Thyroid carcinoma</topic><topic>Thyroid neoplasm</topic><topic>X ray imagery</topic><topic>X-ray imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Tajbakhsh, Kiarash</creatorcontrib><creatorcontrib>Stanowska, Olga</creatorcontrib><creatorcontrib>Neels, Antonia</creatorcontrib><creatorcontrib>Perren, Aurel</creatorcontrib><creatorcontrib>Zboray, Robert</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tajbakhsh, Kiarash</au><au>Stanowska, Olga</au><au>Neels, Antonia</au><au>Perren, Aurel</au><au>Zboray, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Virtual Histopathology by Phase-Contrast X-Ray Micro-CT for Follicular Thyroid Neoplasms</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>43</volume><issue>7</issue><spage>2670</spage><epage>2678</epage><pages>2670-2678</pages><issn>0278-0062</issn><issn>1558-254X</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Histological analysis is the core of follicular thyroid carcinoma (FTC) classification. The histopathological criteria of capsular and vascular invasion define malignancy and aggressiveness of FTC. Analysis of multiple sections is cumbersome and as only a minute tissue fraction is analyzed during histopathology, under-sampling remains a problem. Application of an efficient tool for complete tissue imaging in 3D would speed-up diagnosis and increase accuracy. We show that X-ray propagation-based imaging (XPBI) of paraffin-embedded tissue blocks is a valuable complementary method for follicular thyroid carcinoma diagnosis and assessment. It enables a fast, non-destructive and accurate 3D virtual histology of the FTC resection specimen. We demonstrate that XPBI virtual slices can reliably evaluate capsular invasions. Then we discuss the accessible morphological information from XPBI and their significance for vascular invasion diagnosis. We show 3D morphological information that allow to discern vascular invasions. The results are validated by comparing XPBI images with clinically accepted histology slides revised by and under supervision of two experienced endocrine pathologists.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38437150</pmid><doi>10.1109/TMI.2024.3372602</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0081-8908</orcidid><orcidid>https://orcid.org/0000-0002-6819-6092</orcidid><orcidid>https://orcid.org/0000-0001-5752-2852</orcidid><orcidid>https://orcid.org/0000-0001-8014-882X</orcidid><orcidid>https://orcid.org/0000-0003-0811-7396</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2024-07, Vol.43 (7), p.2670-2678
issn 0278-0062
1558-254X
1558-254X
language eng
recordid cdi_proquest_journals_3075416987
source IEEE Xplore (Online service)
subjects 3D virtual histology
Computed tomography
Diagnosis
Electron tubes
Histology
Histopathology
Imaging
Invasions
Malignancy
Medical imaging
Morphology
Neoplasms
Nondestructive testing
phase-contrast X-ray imaging
precision medicine
propagation-based imaging
Three-dimensional displays
Thyroid
Thyroid cancer
Thyroid carcinoma
Thyroid neoplasm
X ray imagery
X-ray imaging
title 3D Virtual Histopathology by Phase-Contrast X-Ray Micro-CT for Follicular Thyroid Neoplasms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Virtual%20Histopathology%20by%20Phase-Contrast%20X-Ray%20Micro-CT%20for%20Follicular%20Thyroid%20Neoplasms&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Tajbakhsh,%20Kiarash&rft.date=2024-07-01&rft.volume=43&rft.issue=7&rft.spage=2670&rft.epage=2678&rft.pages=2670-2678&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2024.3372602&rft_dat=%3Cproquest_pubme%3E2937702130%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-88f3d9d1e8510ee9777d76199dc19174b019475467bf8f37b6e4c052bc0f37a03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3075416987&rft_id=info:pmid/38437150&rft_ieee_id=10458694&rfr_iscdi=true