Loading…

Learning Physical-Spatio-Temporal Features for Video Shadow Removal

Shadow removal in a single image has received increasing attention in recent years. However, removing shadows over dynamic scenes remains largely under-explored. In this paper, we propose the first data-driven video shadow removal model, termed PSTNet, by exploiting three essential characteristics o...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems for video technology 2024-07, Vol.34 (7), p.5830-5842
Main Authors: Chen, Zhihao, Wan, Liang, Xiao, Yefan, Zhu, Lei, Fu, Huazhu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c291t-324b9673c3a1cde3b72b350a38ad1eec08c536310313908eeb2f854cf5c7bcc43
container_end_page 5842
container_issue 7
container_start_page 5830
container_title IEEE transactions on circuits and systems for video technology
container_volume 34
creator Chen, Zhihao
Wan, Liang
Xiao, Yefan
Zhu, Lei
Fu, Huazhu
description Shadow removal in a single image has received increasing attention in recent years. However, removing shadows over dynamic scenes remains largely under-explored. In this paper, we propose the first data-driven video shadow removal model, termed PSTNet, by exploiting three essential characteristics of video shadows, i.e., physical property, spatio relation, and temporal coherence. Specifically, a dedicated physical branch was established to conduct local illumination estimation, which is more applicable for scenes with complex lighting and textures, and then enhance the physical features via a mask-guided attention strategy. Then, we develop a progressive aggregation module to enhance the spatio and temporal characteristics of features maps, and effectively integrate the three kinds of features. Furthermore, to tackle the lack of datasets of paired shadow videos, we synthesize a dataset (SVSRD-85) with aid of the popular game GTAV by controlling the switch of the shadow renderer. Experiments against 9 state-of-the-art models, including image shadow removers and image/video restoration methods, show that our method improves the best SOTA in terms of RMSE error for the shadow area by 14.7%. In addition, we develop a lightweight model adaptation strategy to make our synthetic-driven model effective in real world scenes. The visual comparison on the public SBU-TimeLapse dataset verifies the generalization ability of our model in real scenes.
doi_str_mv 10.1109/TCSVT.2024.3369910
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3075427092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10445327</ieee_id><sourcerecordid>3075427092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-324b9673c3a1cde3b72b350a38ad1eec08c536310313908eeb2f854cf5c7bcc43</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqXwA4hFJNYpY4_dJEsU8ZIqgWjo1nKcCU2V1sFOQf17UtoFqzuLe-ZKh7FrDhPOIbsr8vmimAgQcoI4zTIOJ2zElUpjIUCdDjcoHqeCq3N2EcIKgMtUJiOWz8j4TbP5jN6Wu9BY08bzzvSNiwtad86bNnok0289hah2Plo0FblovjSV-4neae2-TXvJzmrTBro65ph9PD4U-XM8e316ye9nsRUZ72MUssymCVo03FaEZSJKVGAwNRUnspBahVPkgBwzSIlKUadK2lrZpLRW4pjdHv523n1tKfR65bZ-M0xqhERJkUAmhpY4tKx3IXiqdeebtfE7zUHvZek_WXovSx9lDdDNAWqI6B8gpUKR4C8X7mV4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075427092</pqid></control><display><type>article</type><title>Learning Physical-Spatio-Temporal Features for Video Shadow Removal</title><source>IEEE Xplore (Online service)</source><creator>Chen, Zhihao ; Wan, Liang ; Xiao, Yefan ; Zhu, Lei ; Fu, Huazhu</creator><creatorcontrib>Chen, Zhihao ; Wan, Liang ; Xiao, Yefan ; Zhu, Lei ; Fu, Huazhu</creatorcontrib><description>Shadow removal in a single image has received increasing attention in recent years. However, removing shadows over dynamic scenes remains largely under-explored. In this paper, we propose the first data-driven video shadow removal model, termed PSTNet, by exploiting three essential characteristics of video shadows, i.e., physical property, spatio relation, and temporal coherence. Specifically, a dedicated physical branch was established to conduct local illumination estimation, which is more applicable for scenes with complex lighting and textures, and then enhance the physical features via a mask-guided attention strategy. Then, we develop a progressive aggregation module to enhance the spatio and temporal characteristics of features maps, and effectively integrate the three kinds of features. Furthermore, to tackle the lack of datasets of paired shadow videos, we synthesize a dataset (SVSRD-85) with aid of the popular game GTAV by controlling the switch of the shadow renderer. Experiments against 9 state-of-the-art models, including image shadow removers and image/video restoration methods, show that our method improves the best SOTA in terms of RMSE error for the shadow area by 14.7%. In addition, we develop a lightweight model adaptation strategy to make our synthetic-driven model effective in real world scenes. The visual comparison on the public SBU-TimeLapse dataset verifies the generalization ability of our model in real scenes.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2024.3369910</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Circuits and systems ; Datasets ; Effectiveness ; Feature extraction ; Games ; Illumination ; Image restoration ; Lighting ; physical-spatio-temporal features ; Root-mean-square errors ; Shadows ; Strategy ; synthetic scenes ; Task analysis ; Video shadow removal</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2024-07, Vol.34 (7), p.5830-5842</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c291t-324b9673c3a1cde3b72b350a38ad1eec08c536310313908eeb2f854cf5c7bcc43</cites><orcidid>0000-0003-1686-9854 ; 0000-0001-5501-9575 ; 0000-0003-3871-663X ; 0000-0002-9702-5524</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10445327$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Chen, Zhihao</creatorcontrib><creatorcontrib>Wan, Liang</creatorcontrib><creatorcontrib>Xiao, Yefan</creatorcontrib><creatorcontrib>Zhu, Lei</creatorcontrib><creatorcontrib>Fu, Huazhu</creatorcontrib><title>Learning Physical-Spatio-Temporal Features for Video Shadow Removal</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>Shadow removal in a single image has received increasing attention in recent years. However, removing shadows over dynamic scenes remains largely under-explored. In this paper, we propose the first data-driven video shadow removal model, termed PSTNet, by exploiting three essential characteristics of video shadows, i.e., physical property, spatio relation, and temporal coherence. Specifically, a dedicated physical branch was established to conduct local illumination estimation, which is more applicable for scenes with complex lighting and textures, and then enhance the physical features via a mask-guided attention strategy. Then, we develop a progressive aggregation module to enhance the spatio and temporal characteristics of features maps, and effectively integrate the three kinds of features. Furthermore, to tackle the lack of datasets of paired shadow videos, we synthesize a dataset (SVSRD-85) with aid of the popular game GTAV by controlling the switch of the shadow renderer. Experiments against 9 state-of-the-art models, including image shadow removers and image/video restoration methods, show that our method improves the best SOTA in terms of RMSE error for the shadow area by 14.7%. In addition, we develop a lightweight model adaptation strategy to make our synthetic-driven model effective in real world scenes. The visual comparison on the public SBU-TimeLapse dataset verifies the generalization ability of our model in real scenes.</description><subject>Adaptation models</subject><subject>Circuits and systems</subject><subject>Datasets</subject><subject>Effectiveness</subject><subject>Feature extraction</subject><subject>Games</subject><subject>Illumination</subject><subject>Image restoration</subject><subject>Lighting</subject><subject>physical-spatio-temporal features</subject><subject>Root-mean-square errors</subject><subject>Shadows</subject><subject>Strategy</subject><subject>synthetic scenes</subject><subject>Task analysis</subject><subject>Video shadow removal</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAQRS0EEqXwA4hFJNYpY4_dJEsU8ZIqgWjo1nKcCU2V1sFOQf17UtoFqzuLe-ZKh7FrDhPOIbsr8vmimAgQcoI4zTIOJ2zElUpjIUCdDjcoHqeCq3N2EcIKgMtUJiOWz8j4TbP5jN6Wu9BY08bzzvSNiwtad86bNnok0289hah2Plo0FblovjSV-4neae2-TXvJzmrTBro65ph9PD4U-XM8e316ye9nsRUZ72MUssymCVo03FaEZSJKVGAwNRUnspBahVPkgBwzSIlKUadK2lrZpLRW4pjdHv523n1tKfR65bZ-M0xqhERJkUAmhpY4tKx3IXiqdeebtfE7zUHvZek_WXovSx9lDdDNAWqI6B8gpUKR4C8X7mV4</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Chen, Zhihao</creator><creator>Wan, Liang</creator><creator>Xiao, Yefan</creator><creator>Zhu, Lei</creator><creator>Fu, Huazhu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1686-9854</orcidid><orcidid>https://orcid.org/0000-0001-5501-9575</orcidid><orcidid>https://orcid.org/0000-0003-3871-663X</orcidid><orcidid>https://orcid.org/0000-0002-9702-5524</orcidid></search><sort><creationdate>20240701</creationdate><title>Learning Physical-Spatio-Temporal Features for Video Shadow Removal</title><author>Chen, Zhihao ; Wan, Liang ; Xiao, Yefan ; Zhu, Lei ; Fu, Huazhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-324b9673c3a1cde3b72b350a38ad1eec08c536310313908eeb2f854cf5c7bcc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Circuits and systems</topic><topic>Datasets</topic><topic>Effectiveness</topic><topic>Feature extraction</topic><topic>Games</topic><topic>Illumination</topic><topic>Image restoration</topic><topic>Lighting</topic><topic>physical-spatio-temporal features</topic><topic>Root-mean-square errors</topic><topic>Shadows</topic><topic>Strategy</topic><topic>synthetic scenes</topic><topic>Task analysis</topic><topic>Video shadow removal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhihao</creatorcontrib><creatorcontrib>Wan, Liang</creatorcontrib><creatorcontrib>Xiao, Yefan</creatorcontrib><creatorcontrib>Zhu, Lei</creatorcontrib><creatorcontrib>Fu, Huazhu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhihao</au><au>Wan, Liang</au><au>Xiao, Yefan</au><au>Zhu, Lei</au><au>Fu, Huazhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Physical-Spatio-Temporal Features for Video Shadow Removal</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>34</volume><issue>7</issue><spage>5830</spage><epage>5842</epage><pages>5830-5842</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>Shadow removal in a single image has received increasing attention in recent years. However, removing shadows over dynamic scenes remains largely under-explored. In this paper, we propose the first data-driven video shadow removal model, termed PSTNet, by exploiting three essential characteristics of video shadows, i.e., physical property, spatio relation, and temporal coherence. Specifically, a dedicated physical branch was established to conduct local illumination estimation, which is more applicable for scenes with complex lighting and textures, and then enhance the physical features via a mask-guided attention strategy. Then, we develop a progressive aggregation module to enhance the spatio and temporal characteristics of features maps, and effectively integrate the three kinds of features. Furthermore, to tackle the lack of datasets of paired shadow videos, we synthesize a dataset (SVSRD-85) with aid of the popular game GTAV by controlling the switch of the shadow renderer. Experiments against 9 state-of-the-art models, including image shadow removers and image/video restoration methods, show that our method improves the best SOTA in terms of RMSE error for the shadow area by 14.7%. In addition, we develop a lightweight model adaptation strategy to make our synthetic-driven model effective in real world scenes. The visual comparison on the public SBU-TimeLapse dataset verifies the generalization ability of our model in real scenes.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2024.3369910</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1686-9854</orcidid><orcidid>https://orcid.org/0000-0001-5501-9575</orcidid><orcidid>https://orcid.org/0000-0003-3871-663X</orcidid><orcidid>https://orcid.org/0000-0002-9702-5524</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2024-07, Vol.34 (7), p.5830-5842
issn 1051-8215
1558-2205
language eng
recordid cdi_proquest_journals_3075427092
source IEEE Xplore (Online service)
subjects Adaptation models
Circuits and systems
Datasets
Effectiveness
Feature extraction
Games
Illumination
Image restoration
Lighting
physical-spatio-temporal features
Root-mean-square errors
Shadows
Strategy
synthetic scenes
Task analysis
Video shadow removal
title Learning Physical-Spatio-Temporal Features for Video Shadow Removal
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T23%3A13%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Physical-Spatio-Temporal%20Features%20for%20Video%20Shadow%20Removal&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Chen,%20Zhihao&rft.date=2024-07-01&rft.volume=34&rft.issue=7&rft.spage=5830&rft.epage=5842&rft.pages=5830-5842&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2024.3369910&rft_dat=%3Cproquest_ieee_%3E3075427092%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-324b9673c3a1cde3b72b350a38ad1eec08c536310313908eeb2f854cf5c7bcc43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3075427092&rft_id=info:pmid/&rft_ieee_id=10445327&rfr_iscdi=true