Loading…
Large-scale quantum reservoir learning with an analog quantum computer
Quantum machine learning has gained considerable attention as quantum technology advances, presenting a promising approach for efficiently learning complex data patterns. Despite this promise, most contemporary quantum methods require significant resources for variational parameter optimization and...
Saved in:
Published in: | arXiv.org 2024-07 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kornjača, Milan Hong-Ye, Hu Chen, Zhao Wurtz, Jonathan Weinberg, Phillip Hamdan, Majd Zhdanov, Andrii Cantu, Sergio H Zhou, Hengyun Rodrigo Araiza Bravo Bagnall, Kevin Basham, James I Campo, Joseph Choukri, Adam DeAngelo, Robert Paige, Frederick Haines, David Hammett, Julian Hsu, Ning Hu, Ming-Guang Huber, Florian Paul Niklas Jepsen Jia, Ningyuan Karolyshyn, Thomas Kwon, Minho Long, John Lopatin, Jonathan Lukin, Alexander Macrì, Tommaso Marković, Ognjen Martínez-Martínez, Luis A Meng, Xianmei Ostroumov, Evgeny Paquette, David Robinson, John Pedro Sales Rodriguez Singh, Anshuman Sinha, Nandan Thoreen, Henry Wan, Noel Waxman-Lenz, Daniel Wong, Tak Wu, Kai-Hsin Lopes, Pedro L S Boger, Yuval Gemelke, Nathan Kitagawa, Takuya Keesling, Alexander Gao, Xun Bylinskii, Alexei Yelin, Susanne F Liu, Fangli Sheng-Tao, Wang |
description | Quantum machine learning has gained considerable attention as quantum technology advances, presenting a promising approach for efficiently learning complex data patterns. Despite this promise, most contemporary quantum methods require significant resources for variational parameter optimization and face issues with vanishing gradients, leading to experiments that are either limited in scale or lack potential for quantum advantage. To address this, we develop a general-purpose, gradient-free, and scalable quantum reservoir learning algorithm that harnesses the quantum dynamics of neutral-atom analog quantum computers to process data. We experimentally implement the algorithm, achieving competitive performance across various categories of machine learning tasks, including binary and multi-class classification, as well as timeseries prediction. Effective and improving learning is observed with increasing system sizes of up to 108 qubits, demonstrating the largest quantum machine learning experiment to date. We further observe comparative quantum kernel advantage in learning tasks by constructing synthetic datasets based on the geometric differences between generated quantum and classical data kernels. Our findings demonstrate the potential of utilizing classically intractable quantum correlations for effective machine learning. We expect these results to stimulate further extensions to different quantum hardware and machine learning paradigms, including early fault-tolerant hardware and generative machine learning tasks. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3075790305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075790305</sourcerecordid><originalsourceid>FETCH-proquest_journals_30757903053</originalsourceid><addsrcrecordid>eNqNi7EKwjAUAIMgWLT_EHAuxMRYncXi4OheHuVZW9KkfS_R37eDOAsHt9wtRKaN2RXHvdYrkTP3Sil9KLW1JhPVDajFghtwKKcEPqZBEjLSK3QkHQL5zrfy3cWnBD8DLrS_sgnDmCLSRiwf4Bjzr9diW13u52sxUpgScqz7kGh-uTaqtOVJGWXNf9UHC5077A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075790305</pqid></control><display><type>article</type><title>Large-scale quantum reservoir learning with an analog quantum computer</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Kornjača, Milan ; Hong-Ye, Hu ; Chen, Zhao ; Wurtz, Jonathan ; Weinberg, Phillip ; Hamdan, Majd ; Zhdanov, Andrii ; Cantu, Sergio H ; Zhou, Hengyun ; Rodrigo Araiza Bravo ; Bagnall, Kevin ; Basham, James I ; Campo, Joseph ; Choukri, Adam ; DeAngelo, Robert ; Paige, Frederick ; Haines, David ; Hammett, Julian ; Hsu, Ning ; Hu, Ming-Guang ; Huber, Florian ; Paul Niklas Jepsen ; Jia, Ningyuan ; Karolyshyn, Thomas ; Kwon, Minho ; Long, John ; Lopatin, Jonathan ; Lukin, Alexander ; Macrì, Tommaso ; Marković, Ognjen ; Martínez-Martínez, Luis A ; Meng, Xianmei ; Ostroumov, Evgeny ; Paquette, David ; Robinson, John ; Pedro Sales Rodriguez ; Singh, Anshuman ; Sinha, Nandan ; Thoreen, Henry ; Wan, Noel ; Waxman-Lenz, Daniel ; Wong, Tak ; Wu, Kai-Hsin ; Lopes, Pedro L S ; Boger, Yuval ; Gemelke, Nathan ; Kitagawa, Takuya ; Keesling, Alexander ; Gao, Xun ; Bylinskii, Alexei ; Yelin, Susanne F ; Liu, Fangli ; Sheng-Tao, Wang</creator><creatorcontrib>Kornjača, Milan ; Hong-Ye, Hu ; Chen, Zhao ; Wurtz, Jonathan ; Weinberg, Phillip ; Hamdan, Majd ; Zhdanov, Andrii ; Cantu, Sergio H ; Zhou, Hengyun ; Rodrigo Araiza Bravo ; Bagnall, Kevin ; Basham, James I ; Campo, Joseph ; Choukri, Adam ; DeAngelo, Robert ; Paige, Frederick ; Haines, David ; Hammett, Julian ; Hsu, Ning ; Hu, Ming-Guang ; Huber, Florian ; Paul Niklas Jepsen ; Jia, Ningyuan ; Karolyshyn, Thomas ; Kwon, Minho ; Long, John ; Lopatin, Jonathan ; Lukin, Alexander ; Macrì, Tommaso ; Marković, Ognjen ; Martínez-Martínez, Luis A ; Meng, Xianmei ; Ostroumov, Evgeny ; Paquette, David ; Robinson, John ; Pedro Sales Rodriguez ; Singh, Anshuman ; Sinha, Nandan ; Thoreen, Henry ; Wan, Noel ; Waxman-Lenz, Daniel ; Wong, Tak ; Wu, Kai-Hsin ; Lopes, Pedro L S ; Boger, Yuval ; Gemelke, Nathan ; Kitagawa, Takuya ; Keesling, Alexander ; Gao, Xun ; Bylinskii, Alexei ; Yelin, Susanne F ; Liu, Fangli ; Sheng-Tao, Wang</creatorcontrib><description>Quantum machine learning has gained considerable attention as quantum technology advances, presenting a promising approach for efficiently learning complex data patterns. Despite this promise, most contemporary quantum methods require significant resources for variational parameter optimization and face issues with vanishing gradients, leading to experiments that are either limited in scale or lack potential for quantum advantage. To address this, we develop a general-purpose, gradient-free, and scalable quantum reservoir learning algorithm that harnesses the quantum dynamics of neutral-atom analog quantum computers to process data. We experimentally implement the algorithm, achieving competitive performance across various categories of machine learning tasks, including binary and multi-class classification, as well as timeseries prediction. Effective and improving learning is observed with increasing system sizes of up to 108 qubits, demonstrating the largest quantum machine learning experiment to date. We further observe comparative quantum kernel advantage in learning tasks by constructing synthetic datasets based on the geometric differences between generated quantum and classical data kernels. Our findings demonstrate the potential of utilizing classically intractable quantum correlations for effective machine learning. We expect these results to stimulate further extensions to different quantum hardware and machine learning paradigms, including early fault-tolerant hardware and generative machine learning tasks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Cognitive tasks ; Effectiveness ; Fault tolerance ; Hardware ; Harnesses ; Machine learning ; Quantum computers ; Quantum computing ; Qubits (quantum computing) ; Reservoirs ; Synthetic data</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3075790305?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Kornjača, Milan</creatorcontrib><creatorcontrib>Hong-Ye, Hu</creatorcontrib><creatorcontrib>Chen, Zhao</creatorcontrib><creatorcontrib>Wurtz, Jonathan</creatorcontrib><creatorcontrib>Weinberg, Phillip</creatorcontrib><creatorcontrib>Hamdan, Majd</creatorcontrib><creatorcontrib>Zhdanov, Andrii</creatorcontrib><creatorcontrib>Cantu, Sergio H</creatorcontrib><creatorcontrib>Zhou, Hengyun</creatorcontrib><creatorcontrib>Rodrigo Araiza Bravo</creatorcontrib><creatorcontrib>Bagnall, Kevin</creatorcontrib><creatorcontrib>Basham, James I</creatorcontrib><creatorcontrib>Campo, Joseph</creatorcontrib><creatorcontrib>Choukri, Adam</creatorcontrib><creatorcontrib>DeAngelo, Robert</creatorcontrib><creatorcontrib>Paige, Frederick</creatorcontrib><creatorcontrib>Haines, David</creatorcontrib><creatorcontrib>Hammett, Julian</creatorcontrib><creatorcontrib>Hsu, Ning</creatorcontrib><creatorcontrib>Hu, Ming-Guang</creatorcontrib><creatorcontrib>Huber, Florian</creatorcontrib><creatorcontrib>Paul Niklas Jepsen</creatorcontrib><creatorcontrib>Jia, Ningyuan</creatorcontrib><creatorcontrib>Karolyshyn, Thomas</creatorcontrib><creatorcontrib>Kwon, Minho</creatorcontrib><creatorcontrib>Long, John</creatorcontrib><creatorcontrib>Lopatin, Jonathan</creatorcontrib><creatorcontrib>Lukin, Alexander</creatorcontrib><creatorcontrib>Macrì, Tommaso</creatorcontrib><creatorcontrib>Marković, Ognjen</creatorcontrib><creatorcontrib>Martínez-Martínez, Luis A</creatorcontrib><creatorcontrib>Meng, Xianmei</creatorcontrib><creatorcontrib>Ostroumov, Evgeny</creatorcontrib><creatorcontrib>Paquette, David</creatorcontrib><creatorcontrib>Robinson, John</creatorcontrib><creatorcontrib>Pedro Sales Rodriguez</creatorcontrib><creatorcontrib>Singh, Anshuman</creatorcontrib><creatorcontrib>Sinha, Nandan</creatorcontrib><creatorcontrib>Thoreen, Henry</creatorcontrib><creatorcontrib>Wan, Noel</creatorcontrib><creatorcontrib>Waxman-Lenz, Daniel</creatorcontrib><creatorcontrib>Wong, Tak</creatorcontrib><creatorcontrib>Wu, Kai-Hsin</creatorcontrib><creatorcontrib>Lopes, Pedro L S</creatorcontrib><creatorcontrib>Boger, Yuval</creatorcontrib><creatorcontrib>Gemelke, Nathan</creatorcontrib><creatorcontrib>Kitagawa, Takuya</creatorcontrib><creatorcontrib>Keesling, Alexander</creatorcontrib><creatorcontrib>Gao, Xun</creatorcontrib><creatorcontrib>Bylinskii, Alexei</creatorcontrib><creatorcontrib>Yelin, Susanne F</creatorcontrib><creatorcontrib>Liu, Fangli</creatorcontrib><creatorcontrib>Sheng-Tao, Wang</creatorcontrib><title>Large-scale quantum reservoir learning with an analog quantum computer</title><title>arXiv.org</title><description>Quantum machine learning has gained considerable attention as quantum technology advances, presenting a promising approach for efficiently learning complex data patterns. Despite this promise, most contemporary quantum methods require significant resources for variational parameter optimization and face issues with vanishing gradients, leading to experiments that are either limited in scale or lack potential for quantum advantage. To address this, we develop a general-purpose, gradient-free, and scalable quantum reservoir learning algorithm that harnesses the quantum dynamics of neutral-atom analog quantum computers to process data. We experimentally implement the algorithm, achieving competitive performance across various categories of machine learning tasks, including binary and multi-class classification, as well as timeseries prediction. Effective and improving learning is observed with increasing system sizes of up to 108 qubits, demonstrating the largest quantum machine learning experiment to date. We further observe comparative quantum kernel advantage in learning tasks by constructing synthetic datasets based on the geometric differences between generated quantum and classical data kernels. Our findings demonstrate the potential of utilizing classically intractable quantum correlations for effective machine learning. We expect these results to stimulate further extensions to different quantum hardware and machine learning paradigms, including early fault-tolerant hardware and generative machine learning tasks.</description><subject>Algorithms</subject><subject>Cognitive tasks</subject><subject>Effectiveness</subject><subject>Fault tolerance</subject><subject>Hardware</subject><subject>Harnesses</subject><subject>Machine learning</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Qubits (quantum computing)</subject><subject>Reservoirs</subject><subject>Synthetic data</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi7EKwjAUAIMgWLT_EHAuxMRYncXi4OheHuVZW9KkfS_R37eDOAsHt9wtRKaN2RXHvdYrkTP3Sil9KLW1JhPVDajFghtwKKcEPqZBEjLSK3QkHQL5zrfy3cWnBD8DLrS_sgnDmCLSRiwf4Bjzr9diW13u52sxUpgScqz7kGh-uTaqtOVJGWXNf9UHC5077A</recordid><startdate>20240702</startdate><enddate>20240702</enddate><creator>Kornjača, Milan</creator><creator>Hong-Ye, Hu</creator><creator>Chen, Zhao</creator><creator>Wurtz, Jonathan</creator><creator>Weinberg, Phillip</creator><creator>Hamdan, Majd</creator><creator>Zhdanov, Andrii</creator><creator>Cantu, Sergio H</creator><creator>Zhou, Hengyun</creator><creator>Rodrigo Araiza Bravo</creator><creator>Bagnall, Kevin</creator><creator>Basham, James I</creator><creator>Campo, Joseph</creator><creator>Choukri, Adam</creator><creator>DeAngelo, Robert</creator><creator>Paige, Frederick</creator><creator>Haines, David</creator><creator>Hammett, Julian</creator><creator>Hsu, Ning</creator><creator>Hu, Ming-Guang</creator><creator>Huber, Florian</creator><creator>Paul Niklas Jepsen</creator><creator>Jia, Ningyuan</creator><creator>Karolyshyn, Thomas</creator><creator>Kwon, Minho</creator><creator>Long, John</creator><creator>Lopatin, Jonathan</creator><creator>Lukin, Alexander</creator><creator>Macrì, Tommaso</creator><creator>Marković, Ognjen</creator><creator>Martínez-Martínez, Luis A</creator><creator>Meng, Xianmei</creator><creator>Ostroumov, Evgeny</creator><creator>Paquette, David</creator><creator>Robinson, John</creator><creator>Pedro Sales Rodriguez</creator><creator>Singh, Anshuman</creator><creator>Sinha, Nandan</creator><creator>Thoreen, Henry</creator><creator>Wan, Noel</creator><creator>Waxman-Lenz, Daniel</creator><creator>Wong, Tak</creator><creator>Wu, Kai-Hsin</creator><creator>Lopes, Pedro L S</creator><creator>Boger, Yuval</creator><creator>Gemelke, Nathan</creator><creator>Kitagawa, Takuya</creator><creator>Keesling, Alexander</creator><creator>Gao, Xun</creator><creator>Bylinskii, Alexei</creator><creator>Yelin, Susanne F</creator><creator>Liu, Fangli</creator><creator>Sheng-Tao, Wang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240702</creationdate><title>Large-scale quantum reservoir learning with an analog quantum computer</title><author>Kornjača, Milan ; Hong-Ye, Hu ; Chen, Zhao ; Wurtz, Jonathan ; Weinberg, Phillip ; Hamdan, Majd ; Zhdanov, Andrii ; Cantu, Sergio H ; Zhou, Hengyun ; Rodrigo Araiza Bravo ; Bagnall, Kevin ; Basham, James I ; Campo, Joseph ; Choukri, Adam ; DeAngelo, Robert ; Paige, Frederick ; Haines, David ; Hammett, Julian ; Hsu, Ning ; Hu, Ming-Guang ; Huber, Florian ; Paul Niklas Jepsen ; Jia, Ningyuan ; Karolyshyn, Thomas ; Kwon, Minho ; Long, John ; Lopatin, Jonathan ; Lukin, Alexander ; Macrì, Tommaso ; Marković, Ognjen ; Martínez-Martínez, Luis A ; Meng, Xianmei ; Ostroumov, Evgeny ; Paquette, David ; Robinson, John ; Pedro Sales Rodriguez ; Singh, Anshuman ; Sinha, Nandan ; Thoreen, Henry ; Wan, Noel ; Waxman-Lenz, Daniel ; Wong, Tak ; Wu, Kai-Hsin ; Lopes, Pedro L S ; Boger, Yuval ; Gemelke, Nathan ; Kitagawa, Takuya ; Keesling, Alexander ; Gao, Xun ; Bylinskii, Alexei ; Yelin, Susanne F ; Liu, Fangli ; Sheng-Tao, Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30757903053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Cognitive tasks</topic><topic>Effectiveness</topic><topic>Fault tolerance</topic><topic>Hardware</topic><topic>Harnesses</topic><topic>Machine learning</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Qubits (quantum computing)</topic><topic>Reservoirs</topic><topic>Synthetic data</topic><toplevel>online_resources</toplevel><creatorcontrib>Kornjača, Milan</creatorcontrib><creatorcontrib>Hong-Ye, Hu</creatorcontrib><creatorcontrib>Chen, Zhao</creatorcontrib><creatorcontrib>Wurtz, Jonathan</creatorcontrib><creatorcontrib>Weinberg, Phillip</creatorcontrib><creatorcontrib>Hamdan, Majd</creatorcontrib><creatorcontrib>Zhdanov, Andrii</creatorcontrib><creatorcontrib>Cantu, Sergio H</creatorcontrib><creatorcontrib>Zhou, Hengyun</creatorcontrib><creatorcontrib>Rodrigo Araiza Bravo</creatorcontrib><creatorcontrib>Bagnall, Kevin</creatorcontrib><creatorcontrib>Basham, James I</creatorcontrib><creatorcontrib>Campo, Joseph</creatorcontrib><creatorcontrib>Choukri, Adam</creatorcontrib><creatorcontrib>DeAngelo, Robert</creatorcontrib><creatorcontrib>Paige, Frederick</creatorcontrib><creatorcontrib>Haines, David</creatorcontrib><creatorcontrib>Hammett, Julian</creatorcontrib><creatorcontrib>Hsu, Ning</creatorcontrib><creatorcontrib>Hu, Ming-Guang</creatorcontrib><creatorcontrib>Huber, Florian</creatorcontrib><creatorcontrib>Paul Niklas Jepsen</creatorcontrib><creatorcontrib>Jia, Ningyuan</creatorcontrib><creatorcontrib>Karolyshyn, Thomas</creatorcontrib><creatorcontrib>Kwon, Minho</creatorcontrib><creatorcontrib>Long, John</creatorcontrib><creatorcontrib>Lopatin, Jonathan</creatorcontrib><creatorcontrib>Lukin, Alexander</creatorcontrib><creatorcontrib>Macrì, Tommaso</creatorcontrib><creatorcontrib>Marković, Ognjen</creatorcontrib><creatorcontrib>Martínez-Martínez, Luis A</creatorcontrib><creatorcontrib>Meng, Xianmei</creatorcontrib><creatorcontrib>Ostroumov, Evgeny</creatorcontrib><creatorcontrib>Paquette, David</creatorcontrib><creatorcontrib>Robinson, John</creatorcontrib><creatorcontrib>Pedro Sales Rodriguez</creatorcontrib><creatorcontrib>Singh, Anshuman</creatorcontrib><creatorcontrib>Sinha, Nandan</creatorcontrib><creatorcontrib>Thoreen, Henry</creatorcontrib><creatorcontrib>Wan, Noel</creatorcontrib><creatorcontrib>Waxman-Lenz, Daniel</creatorcontrib><creatorcontrib>Wong, Tak</creatorcontrib><creatorcontrib>Wu, Kai-Hsin</creatorcontrib><creatorcontrib>Lopes, Pedro L S</creatorcontrib><creatorcontrib>Boger, Yuval</creatorcontrib><creatorcontrib>Gemelke, Nathan</creatorcontrib><creatorcontrib>Kitagawa, Takuya</creatorcontrib><creatorcontrib>Keesling, Alexander</creatorcontrib><creatorcontrib>Gao, Xun</creatorcontrib><creatorcontrib>Bylinskii, Alexei</creatorcontrib><creatorcontrib>Yelin, Susanne F</creatorcontrib><creatorcontrib>Liu, Fangli</creatorcontrib><creatorcontrib>Sheng-Tao, Wang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kornjača, Milan</au><au>Hong-Ye, Hu</au><au>Chen, Zhao</au><au>Wurtz, Jonathan</au><au>Weinberg, Phillip</au><au>Hamdan, Majd</au><au>Zhdanov, Andrii</au><au>Cantu, Sergio H</au><au>Zhou, Hengyun</au><au>Rodrigo Araiza Bravo</au><au>Bagnall, Kevin</au><au>Basham, James I</au><au>Campo, Joseph</au><au>Choukri, Adam</au><au>DeAngelo, Robert</au><au>Paige, Frederick</au><au>Haines, David</au><au>Hammett, Julian</au><au>Hsu, Ning</au><au>Hu, Ming-Guang</au><au>Huber, Florian</au><au>Paul Niklas Jepsen</au><au>Jia, Ningyuan</au><au>Karolyshyn, Thomas</au><au>Kwon, Minho</au><au>Long, John</au><au>Lopatin, Jonathan</au><au>Lukin, Alexander</au><au>Macrì, Tommaso</au><au>Marković, Ognjen</au><au>Martínez-Martínez, Luis A</au><au>Meng, Xianmei</au><au>Ostroumov, Evgeny</au><au>Paquette, David</au><au>Robinson, John</au><au>Pedro Sales Rodriguez</au><au>Singh, Anshuman</au><au>Sinha, Nandan</au><au>Thoreen, Henry</au><au>Wan, Noel</au><au>Waxman-Lenz, Daniel</au><au>Wong, Tak</au><au>Wu, Kai-Hsin</au><au>Lopes, Pedro L S</au><au>Boger, Yuval</au><au>Gemelke, Nathan</au><au>Kitagawa, Takuya</au><au>Keesling, Alexander</au><au>Gao, Xun</au><au>Bylinskii, Alexei</au><au>Yelin, Susanne F</au><au>Liu, Fangli</au><au>Sheng-Tao, Wang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Large-scale quantum reservoir learning with an analog quantum computer</atitle><jtitle>arXiv.org</jtitle><date>2024-07-02</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Quantum machine learning has gained considerable attention as quantum technology advances, presenting a promising approach for efficiently learning complex data patterns. Despite this promise, most contemporary quantum methods require significant resources for variational parameter optimization and face issues with vanishing gradients, leading to experiments that are either limited in scale or lack potential for quantum advantage. To address this, we develop a general-purpose, gradient-free, and scalable quantum reservoir learning algorithm that harnesses the quantum dynamics of neutral-atom analog quantum computers to process data. We experimentally implement the algorithm, achieving competitive performance across various categories of machine learning tasks, including binary and multi-class classification, as well as timeseries prediction. Effective and improving learning is observed with increasing system sizes of up to 108 qubits, demonstrating the largest quantum machine learning experiment to date. We further observe comparative quantum kernel advantage in learning tasks by constructing synthetic datasets based on the geometric differences between generated quantum and classical data kernels. Our findings demonstrate the potential of utilizing classically intractable quantum correlations for effective machine learning. We expect these results to stimulate further extensions to different quantum hardware and machine learning paradigms, including early fault-tolerant hardware and generative machine learning tasks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3075790305 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Algorithms Cognitive tasks Effectiveness Fault tolerance Hardware Harnesses Machine learning Quantum computers Quantum computing Qubits (quantum computing) Reservoirs Synthetic data |
title | Large-scale quantum reservoir learning with an analog quantum computer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A53%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Large-scale%20quantum%20reservoir%20learning%20with%20an%20analog%20quantum%20computer&rft.jtitle=arXiv.org&rft.au=Kornja%C4%8Da,%20Milan&rft.date=2024-07-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3075790305%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30757903053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3075790305&rft_id=info:pmid/&rfr_iscdi=true |