Loading…

Large-scale quantum reservoir learning with an analog quantum computer

Quantum machine learning has gained considerable attention as quantum technology advances, presenting a promising approach for efficiently learning complex data patterns. Despite this promise, most contemporary quantum methods require significant resources for variational parameter optimization and...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-07
Main Authors: Kornjača, Milan, Hong-Ye, Hu, Chen, Zhao, Wurtz, Jonathan, Weinberg, Phillip, Hamdan, Majd, Zhdanov, Andrii, Cantu, Sergio H, Zhou, Hengyun, Rodrigo Araiza Bravo, Bagnall, Kevin, Basham, James I, Campo, Joseph, Choukri, Adam, DeAngelo, Robert, Paige, Frederick, Haines, David, Hammett, Julian, Hsu, Ning, Hu, Ming-Guang, Huber, Florian, Paul Niklas Jepsen, Jia, Ningyuan, Karolyshyn, Thomas, Kwon, Minho, Long, John, Lopatin, Jonathan, Lukin, Alexander, Macrì, Tommaso, Marković, Ognjen, Martínez-Martínez, Luis A, Meng, Xianmei, Ostroumov, Evgeny, Paquette, David, Robinson, John, Pedro Sales Rodriguez, Singh, Anshuman, Sinha, Nandan, Thoreen, Henry, Wan, Noel, Waxman-Lenz, Daniel, Wong, Tak, Wu, Kai-Hsin, Lopes, Pedro L S, Boger, Yuval, Gemelke, Nathan, Kitagawa, Takuya, Keesling, Alexander, Gao, Xun, Bylinskii, Alexei, Yelin, Susanne F, Liu, Fangli, Sheng-Tao, Wang
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kornjača, Milan
Hong-Ye, Hu
Chen, Zhao
Wurtz, Jonathan
Weinberg, Phillip
Hamdan, Majd
Zhdanov, Andrii
Cantu, Sergio H
Zhou, Hengyun
Rodrigo Araiza Bravo
Bagnall, Kevin
Basham, James I
Campo, Joseph
Choukri, Adam
DeAngelo, Robert
Paige, Frederick
Haines, David
Hammett, Julian
Hsu, Ning
Hu, Ming-Guang
Huber, Florian
Paul Niklas Jepsen
Jia, Ningyuan
Karolyshyn, Thomas
Kwon, Minho
Long, John
Lopatin, Jonathan
Lukin, Alexander
Macrì, Tommaso
Marković, Ognjen
Martínez-Martínez, Luis A
Meng, Xianmei
Ostroumov, Evgeny
Paquette, David
Robinson, John
Pedro Sales Rodriguez
Singh, Anshuman
Sinha, Nandan
Thoreen, Henry
Wan, Noel
Waxman-Lenz, Daniel
Wong, Tak
Wu, Kai-Hsin
Lopes, Pedro L S
Boger, Yuval
Gemelke, Nathan
Kitagawa, Takuya
Keesling, Alexander
Gao, Xun
Bylinskii, Alexei
Yelin, Susanne F
Liu, Fangli
Sheng-Tao, Wang
description Quantum machine learning has gained considerable attention as quantum technology advances, presenting a promising approach for efficiently learning complex data patterns. Despite this promise, most contemporary quantum methods require significant resources for variational parameter optimization and face issues with vanishing gradients, leading to experiments that are either limited in scale or lack potential for quantum advantage. To address this, we develop a general-purpose, gradient-free, and scalable quantum reservoir learning algorithm that harnesses the quantum dynamics of neutral-atom analog quantum computers to process data. We experimentally implement the algorithm, achieving competitive performance across various categories of machine learning tasks, including binary and multi-class classification, as well as timeseries prediction. Effective and improving learning is observed with increasing system sizes of up to 108 qubits, demonstrating the largest quantum machine learning experiment to date. We further observe comparative quantum kernel advantage in learning tasks by constructing synthetic datasets based on the geometric differences between generated quantum and classical data kernels. Our findings demonstrate the potential of utilizing classically intractable quantum correlations for effective machine learning. We expect these results to stimulate further extensions to different quantum hardware and machine learning paradigms, including early fault-tolerant hardware and generative machine learning tasks.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3075790305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075790305</sourcerecordid><originalsourceid>FETCH-proquest_journals_30757903053</originalsourceid><addsrcrecordid>eNqNi7EKwjAUAIMgWLT_EHAuxMRYncXi4OheHuVZW9KkfS_R37eDOAsHt9wtRKaN2RXHvdYrkTP3Sil9KLW1JhPVDajFghtwKKcEPqZBEjLSK3QkHQL5zrfy3cWnBD8DLrS_sgnDmCLSRiwf4Bjzr9diW13u52sxUpgScqz7kGh-uTaqtOVJGWXNf9UHC5077A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075790305</pqid></control><display><type>article</type><title>Large-scale quantum reservoir learning with an analog quantum computer</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Kornjača, Milan ; Hong-Ye, Hu ; Chen, Zhao ; Wurtz, Jonathan ; Weinberg, Phillip ; Hamdan, Majd ; Zhdanov, Andrii ; Cantu, Sergio H ; Zhou, Hengyun ; Rodrigo Araiza Bravo ; Bagnall, Kevin ; Basham, James I ; Campo, Joseph ; Choukri, Adam ; DeAngelo, Robert ; Paige, Frederick ; Haines, David ; Hammett, Julian ; Hsu, Ning ; Hu, Ming-Guang ; Huber, Florian ; Paul Niklas Jepsen ; Jia, Ningyuan ; Karolyshyn, Thomas ; Kwon, Minho ; Long, John ; Lopatin, Jonathan ; Lukin, Alexander ; Macrì, Tommaso ; Marković, Ognjen ; Martínez-Martínez, Luis A ; Meng, Xianmei ; Ostroumov, Evgeny ; Paquette, David ; Robinson, John ; Pedro Sales Rodriguez ; Singh, Anshuman ; Sinha, Nandan ; Thoreen, Henry ; Wan, Noel ; Waxman-Lenz, Daniel ; Wong, Tak ; Wu, Kai-Hsin ; Lopes, Pedro L S ; Boger, Yuval ; Gemelke, Nathan ; Kitagawa, Takuya ; Keesling, Alexander ; Gao, Xun ; Bylinskii, Alexei ; Yelin, Susanne F ; Liu, Fangli ; Sheng-Tao, Wang</creator><creatorcontrib>Kornjača, Milan ; Hong-Ye, Hu ; Chen, Zhao ; Wurtz, Jonathan ; Weinberg, Phillip ; Hamdan, Majd ; Zhdanov, Andrii ; Cantu, Sergio H ; Zhou, Hengyun ; Rodrigo Araiza Bravo ; Bagnall, Kevin ; Basham, James I ; Campo, Joseph ; Choukri, Adam ; DeAngelo, Robert ; Paige, Frederick ; Haines, David ; Hammett, Julian ; Hsu, Ning ; Hu, Ming-Guang ; Huber, Florian ; Paul Niklas Jepsen ; Jia, Ningyuan ; Karolyshyn, Thomas ; Kwon, Minho ; Long, John ; Lopatin, Jonathan ; Lukin, Alexander ; Macrì, Tommaso ; Marković, Ognjen ; Martínez-Martínez, Luis A ; Meng, Xianmei ; Ostroumov, Evgeny ; Paquette, David ; Robinson, John ; Pedro Sales Rodriguez ; Singh, Anshuman ; Sinha, Nandan ; Thoreen, Henry ; Wan, Noel ; Waxman-Lenz, Daniel ; Wong, Tak ; Wu, Kai-Hsin ; Lopes, Pedro L S ; Boger, Yuval ; Gemelke, Nathan ; Kitagawa, Takuya ; Keesling, Alexander ; Gao, Xun ; Bylinskii, Alexei ; Yelin, Susanne F ; Liu, Fangli ; Sheng-Tao, Wang</creatorcontrib><description>Quantum machine learning has gained considerable attention as quantum technology advances, presenting a promising approach for efficiently learning complex data patterns. Despite this promise, most contemporary quantum methods require significant resources for variational parameter optimization and face issues with vanishing gradients, leading to experiments that are either limited in scale or lack potential for quantum advantage. To address this, we develop a general-purpose, gradient-free, and scalable quantum reservoir learning algorithm that harnesses the quantum dynamics of neutral-atom analog quantum computers to process data. We experimentally implement the algorithm, achieving competitive performance across various categories of machine learning tasks, including binary and multi-class classification, as well as timeseries prediction. Effective and improving learning is observed with increasing system sizes of up to 108 qubits, demonstrating the largest quantum machine learning experiment to date. We further observe comparative quantum kernel advantage in learning tasks by constructing synthetic datasets based on the geometric differences between generated quantum and classical data kernels. Our findings demonstrate the potential of utilizing classically intractable quantum correlations for effective machine learning. We expect these results to stimulate further extensions to different quantum hardware and machine learning paradigms, including early fault-tolerant hardware and generative machine learning tasks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Cognitive tasks ; Effectiveness ; Fault tolerance ; Hardware ; Harnesses ; Machine learning ; Quantum computers ; Quantum computing ; Qubits (quantum computing) ; Reservoirs ; Synthetic data</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3075790305?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Kornjača, Milan</creatorcontrib><creatorcontrib>Hong-Ye, Hu</creatorcontrib><creatorcontrib>Chen, Zhao</creatorcontrib><creatorcontrib>Wurtz, Jonathan</creatorcontrib><creatorcontrib>Weinberg, Phillip</creatorcontrib><creatorcontrib>Hamdan, Majd</creatorcontrib><creatorcontrib>Zhdanov, Andrii</creatorcontrib><creatorcontrib>Cantu, Sergio H</creatorcontrib><creatorcontrib>Zhou, Hengyun</creatorcontrib><creatorcontrib>Rodrigo Araiza Bravo</creatorcontrib><creatorcontrib>Bagnall, Kevin</creatorcontrib><creatorcontrib>Basham, James I</creatorcontrib><creatorcontrib>Campo, Joseph</creatorcontrib><creatorcontrib>Choukri, Adam</creatorcontrib><creatorcontrib>DeAngelo, Robert</creatorcontrib><creatorcontrib>Paige, Frederick</creatorcontrib><creatorcontrib>Haines, David</creatorcontrib><creatorcontrib>Hammett, Julian</creatorcontrib><creatorcontrib>Hsu, Ning</creatorcontrib><creatorcontrib>Hu, Ming-Guang</creatorcontrib><creatorcontrib>Huber, Florian</creatorcontrib><creatorcontrib>Paul Niklas Jepsen</creatorcontrib><creatorcontrib>Jia, Ningyuan</creatorcontrib><creatorcontrib>Karolyshyn, Thomas</creatorcontrib><creatorcontrib>Kwon, Minho</creatorcontrib><creatorcontrib>Long, John</creatorcontrib><creatorcontrib>Lopatin, Jonathan</creatorcontrib><creatorcontrib>Lukin, Alexander</creatorcontrib><creatorcontrib>Macrì, Tommaso</creatorcontrib><creatorcontrib>Marković, Ognjen</creatorcontrib><creatorcontrib>Martínez-Martínez, Luis A</creatorcontrib><creatorcontrib>Meng, Xianmei</creatorcontrib><creatorcontrib>Ostroumov, Evgeny</creatorcontrib><creatorcontrib>Paquette, David</creatorcontrib><creatorcontrib>Robinson, John</creatorcontrib><creatorcontrib>Pedro Sales Rodriguez</creatorcontrib><creatorcontrib>Singh, Anshuman</creatorcontrib><creatorcontrib>Sinha, Nandan</creatorcontrib><creatorcontrib>Thoreen, Henry</creatorcontrib><creatorcontrib>Wan, Noel</creatorcontrib><creatorcontrib>Waxman-Lenz, Daniel</creatorcontrib><creatorcontrib>Wong, Tak</creatorcontrib><creatorcontrib>Wu, Kai-Hsin</creatorcontrib><creatorcontrib>Lopes, Pedro L S</creatorcontrib><creatorcontrib>Boger, Yuval</creatorcontrib><creatorcontrib>Gemelke, Nathan</creatorcontrib><creatorcontrib>Kitagawa, Takuya</creatorcontrib><creatorcontrib>Keesling, Alexander</creatorcontrib><creatorcontrib>Gao, Xun</creatorcontrib><creatorcontrib>Bylinskii, Alexei</creatorcontrib><creatorcontrib>Yelin, Susanne F</creatorcontrib><creatorcontrib>Liu, Fangli</creatorcontrib><creatorcontrib>Sheng-Tao, Wang</creatorcontrib><title>Large-scale quantum reservoir learning with an analog quantum computer</title><title>arXiv.org</title><description>Quantum machine learning has gained considerable attention as quantum technology advances, presenting a promising approach for efficiently learning complex data patterns. Despite this promise, most contemporary quantum methods require significant resources for variational parameter optimization and face issues with vanishing gradients, leading to experiments that are either limited in scale or lack potential for quantum advantage. To address this, we develop a general-purpose, gradient-free, and scalable quantum reservoir learning algorithm that harnesses the quantum dynamics of neutral-atom analog quantum computers to process data. We experimentally implement the algorithm, achieving competitive performance across various categories of machine learning tasks, including binary and multi-class classification, as well as timeseries prediction. Effective and improving learning is observed with increasing system sizes of up to 108 qubits, demonstrating the largest quantum machine learning experiment to date. We further observe comparative quantum kernel advantage in learning tasks by constructing synthetic datasets based on the geometric differences between generated quantum and classical data kernels. Our findings demonstrate the potential of utilizing classically intractable quantum correlations for effective machine learning. We expect these results to stimulate further extensions to different quantum hardware and machine learning paradigms, including early fault-tolerant hardware and generative machine learning tasks.</description><subject>Algorithms</subject><subject>Cognitive tasks</subject><subject>Effectiveness</subject><subject>Fault tolerance</subject><subject>Hardware</subject><subject>Harnesses</subject><subject>Machine learning</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Qubits (quantum computing)</subject><subject>Reservoirs</subject><subject>Synthetic data</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi7EKwjAUAIMgWLT_EHAuxMRYncXi4OheHuVZW9KkfS_R37eDOAsHt9wtRKaN2RXHvdYrkTP3Sil9KLW1JhPVDajFghtwKKcEPqZBEjLSK3QkHQL5zrfy3cWnBD8DLrS_sgnDmCLSRiwf4Bjzr9diW13u52sxUpgScqz7kGh-uTaqtOVJGWXNf9UHC5077A</recordid><startdate>20240702</startdate><enddate>20240702</enddate><creator>Kornjača, Milan</creator><creator>Hong-Ye, Hu</creator><creator>Chen, Zhao</creator><creator>Wurtz, Jonathan</creator><creator>Weinberg, Phillip</creator><creator>Hamdan, Majd</creator><creator>Zhdanov, Andrii</creator><creator>Cantu, Sergio H</creator><creator>Zhou, Hengyun</creator><creator>Rodrigo Araiza Bravo</creator><creator>Bagnall, Kevin</creator><creator>Basham, James I</creator><creator>Campo, Joseph</creator><creator>Choukri, Adam</creator><creator>DeAngelo, Robert</creator><creator>Paige, Frederick</creator><creator>Haines, David</creator><creator>Hammett, Julian</creator><creator>Hsu, Ning</creator><creator>Hu, Ming-Guang</creator><creator>Huber, Florian</creator><creator>Paul Niklas Jepsen</creator><creator>Jia, Ningyuan</creator><creator>Karolyshyn, Thomas</creator><creator>Kwon, Minho</creator><creator>Long, John</creator><creator>Lopatin, Jonathan</creator><creator>Lukin, Alexander</creator><creator>Macrì, Tommaso</creator><creator>Marković, Ognjen</creator><creator>Martínez-Martínez, Luis A</creator><creator>Meng, Xianmei</creator><creator>Ostroumov, Evgeny</creator><creator>Paquette, David</creator><creator>Robinson, John</creator><creator>Pedro Sales Rodriguez</creator><creator>Singh, Anshuman</creator><creator>Sinha, Nandan</creator><creator>Thoreen, Henry</creator><creator>Wan, Noel</creator><creator>Waxman-Lenz, Daniel</creator><creator>Wong, Tak</creator><creator>Wu, Kai-Hsin</creator><creator>Lopes, Pedro L S</creator><creator>Boger, Yuval</creator><creator>Gemelke, Nathan</creator><creator>Kitagawa, Takuya</creator><creator>Keesling, Alexander</creator><creator>Gao, Xun</creator><creator>Bylinskii, Alexei</creator><creator>Yelin, Susanne F</creator><creator>Liu, Fangli</creator><creator>Sheng-Tao, Wang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240702</creationdate><title>Large-scale quantum reservoir learning with an analog quantum computer</title><author>Kornjača, Milan ; Hong-Ye, Hu ; Chen, Zhao ; Wurtz, Jonathan ; Weinberg, Phillip ; Hamdan, Majd ; Zhdanov, Andrii ; Cantu, Sergio H ; Zhou, Hengyun ; Rodrigo Araiza Bravo ; Bagnall, Kevin ; Basham, James I ; Campo, Joseph ; Choukri, Adam ; DeAngelo, Robert ; Paige, Frederick ; Haines, David ; Hammett, Julian ; Hsu, Ning ; Hu, Ming-Guang ; Huber, Florian ; Paul Niklas Jepsen ; Jia, Ningyuan ; Karolyshyn, Thomas ; Kwon, Minho ; Long, John ; Lopatin, Jonathan ; Lukin, Alexander ; Macrì, Tommaso ; Marković, Ognjen ; Martínez-Martínez, Luis A ; Meng, Xianmei ; Ostroumov, Evgeny ; Paquette, David ; Robinson, John ; Pedro Sales Rodriguez ; Singh, Anshuman ; Sinha, Nandan ; Thoreen, Henry ; Wan, Noel ; Waxman-Lenz, Daniel ; Wong, Tak ; Wu, Kai-Hsin ; Lopes, Pedro L S ; Boger, Yuval ; Gemelke, Nathan ; Kitagawa, Takuya ; Keesling, Alexander ; Gao, Xun ; Bylinskii, Alexei ; Yelin, Susanne F ; Liu, Fangli ; Sheng-Tao, Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30757903053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Cognitive tasks</topic><topic>Effectiveness</topic><topic>Fault tolerance</topic><topic>Hardware</topic><topic>Harnesses</topic><topic>Machine learning</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Qubits (quantum computing)</topic><topic>Reservoirs</topic><topic>Synthetic data</topic><toplevel>online_resources</toplevel><creatorcontrib>Kornjača, Milan</creatorcontrib><creatorcontrib>Hong-Ye, Hu</creatorcontrib><creatorcontrib>Chen, Zhao</creatorcontrib><creatorcontrib>Wurtz, Jonathan</creatorcontrib><creatorcontrib>Weinberg, Phillip</creatorcontrib><creatorcontrib>Hamdan, Majd</creatorcontrib><creatorcontrib>Zhdanov, Andrii</creatorcontrib><creatorcontrib>Cantu, Sergio H</creatorcontrib><creatorcontrib>Zhou, Hengyun</creatorcontrib><creatorcontrib>Rodrigo Araiza Bravo</creatorcontrib><creatorcontrib>Bagnall, Kevin</creatorcontrib><creatorcontrib>Basham, James I</creatorcontrib><creatorcontrib>Campo, Joseph</creatorcontrib><creatorcontrib>Choukri, Adam</creatorcontrib><creatorcontrib>DeAngelo, Robert</creatorcontrib><creatorcontrib>Paige, Frederick</creatorcontrib><creatorcontrib>Haines, David</creatorcontrib><creatorcontrib>Hammett, Julian</creatorcontrib><creatorcontrib>Hsu, Ning</creatorcontrib><creatorcontrib>Hu, Ming-Guang</creatorcontrib><creatorcontrib>Huber, Florian</creatorcontrib><creatorcontrib>Paul Niklas Jepsen</creatorcontrib><creatorcontrib>Jia, Ningyuan</creatorcontrib><creatorcontrib>Karolyshyn, Thomas</creatorcontrib><creatorcontrib>Kwon, Minho</creatorcontrib><creatorcontrib>Long, John</creatorcontrib><creatorcontrib>Lopatin, Jonathan</creatorcontrib><creatorcontrib>Lukin, Alexander</creatorcontrib><creatorcontrib>Macrì, Tommaso</creatorcontrib><creatorcontrib>Marković, Ognjen</creatorcontrib><creatorcontrib>Martínez-Martínez, Luis A</creatorcontrib><creatorcontrib>Meng, Xianmei</creatorcontrib><creatorcontrib>Ostroumov, Evgeny</creatorcontrib><creatorcontrib>Paquette, David</creatorcontrib><creatorcontrib>Robinson, John</creatorcontrib><creatorcontrib>Pedro Sales Rodriguez</creatorcontrib><creatorcontrib>Singh, Anshuman</creatorcontrib><creatorcontrib>Sinha, Nandan</creatorcontrib><creatorcontrib>Thoreen, Henry</creatorcontrib><creatorcontrib>Wan, Noel</creatorcontrib><creatorcontrib>Waxman-Lenz, Daniel</creatorcontrib><creatorcontrib>Wong, Tak</creatorcontrib><creatorcontrib>Wu, Kai-Hsin</creatorcontrib><creatorcontrib>Lopes, Pedro L S</creatorcontrib><creatorcontrib>Boger, Yuval</creatorcontrib><creatorcontrib>Gemelke, Nathan</creatorcontrib><creatorcontrib>Kitagawa, Takuya</creatorcontrib><creatorcontrib>Keesling, Alexander</creatorcontrib><creatorcontrib>Gao, Xun</creatorcontrib><creatorcontrib>Bylinskii, Alexei</creatorcontrib><creatorcontrib>Yelin, Susanne F</creatorcontrib><creatorcontrib>Liu, Fangli</creatorcontrib><creatorcontrib>Sheng-Tao, Wang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kornjača, Milan</au><au>Hong-Ye, Hu</au><au>Chen, Zhao</au><au>Wurtz, Jonathan</au><au>Weinberg, Phillip</au><au>Hamdan, Majd</au><au>Zhdanov, Andrii</au><au>Cantu, Sergio H</au><au>Zhou, Hengyun</au><au>Rodrigo Araiza Bravo</au><au>Bagnall, Kevin</au><au>Basham, James I</au><au>Campo, Joseph</au><au>Choukri, Adam</au><au>DeAngelo, Robert</au><au>Paige, Frederick</au><au>Haines, David</au><au>Hammett, Julian</au><au>Hsu, Ning</au><au>Hu, Ming-Guang</au><au>Huber, Florian</au><au>Paul Niklas Jepsen</au><au>Jia, Ningyuan</au><au>Karolyshyn, Thomas</au><au>Kwon, Minho</au><au>Long, John</au><au>Lopatin, Jonathan</au><au>Lukin, Alexander</au><au>Macrì, Tommaso</au><au>Marković, Ognjen</au><au>Martínez-Martínez, Luis A</au><au>Meng, Xianmei</au><au>Ostroumov, Evgeny</au><au>Paquette, David</au><au>Robinson, John</au><au>Pedro Sales Rodriguez</au><au>Singh, Anshuman</au><au>Sinha, Nandan</au><au>Thoreen, Henry</au><au>Wan, Noel</au><au>Waxman-Lenz, Daniel</au><au>Wong, Tak</au><au>Wu, Kai-Hsin</au><au>Lopes, Pedro L S</au><au>Boger, Yuval</au><au>Gemelke, Nathan</au><au>Kitagawa, Takuya</au><au>Keesling, Alexander</au><au>Gao, Xun</au><au>Bylinskii, Alexei</au><au>Yelin, Susanne F</au><au>Liu, Fangli</au><au>Sheng-Tao, Wang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Large-scale quantum reservoir learning with an analog quantum computer</atitle><jtitle>arXiv.org</jtitle><date>2024-07-02</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Quantum machine learning has gained considerable attention as quantum technology advances, presenting a promising approach for efficiently learning complex data patterns. Despite this promise, most contemporary quantum methods require significant resources for variational parameter optimization and face issues with vanishing gradients, leading to experiments that are either limited in scale or lack potential for quantum advantage. To address this, we develop a general-purpose, gradient-free, and scalable quantum reservoir learning algorithm that harnesses the quantum dynamics of neutral-atom analog quantum computers to process data. We experimentally implement the algorithm, achieving competitive performance across various categories of machine learning tasks, including binary and multi-class classification, as well as timeseries prediction. Effective and improving learning is observed with increasing system sizes of up to 108 qubits, demonstrating the largest quantum machine learning experiment to date. We further observe comparative quantum kernel advantage in learning tasks by constructing synthetic datasets based on the geometric differences between generated quantum and classical data kernels. Our findings demonstrate the potential of utilizing classically intractable quantum correlations for effective machine learning. We expect these results to stimulate further extensions to different quantum hardware and machine learning paradigms, including early fault-tolerant hardware and generative machine learning tasks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_3075790305
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Algorithms
Cognitive tasks
Effectiveness
Fault tolerance
Hardware
Harnesses
Machine learning
Quantum computers
Quantum computing
Qubits (quantum computing)
Reservoirs
Synthetic data
title Large-scale quantum reservoir learning with an analog quantum computer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A53%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Large-scale%20quantum%20reservoir%20learning%20with%20an%20analog%20quantum%20computer&rft.jtitle=arXiv.org&rft.au=Kornja%C4%8Da,%20Milan&rft.date=2024-07-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3075790305%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30757903053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3075790305&rft_id=info:pmid/&rfr_iscdi=true