Loading…
Evolution of Band Structure in a Kagome Superconductor Cs(V1-xCrx)3Sb5: Toward Universal Understanding of CDW and Superconducting Phase Diagrams
Kagome superconductors AV3Sb5 (A = K, Rb, Cs) exhibit a characteristic superconducting and charge-density wave (CDW) phase diagram upon carrier doping and chemical substitution. However, the key electronic states responsible for such a phase diagram have yet to be clarified. Here we report a systema...
Saved in:
Published in: | arXiv.org 2024-07 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Suzuki, Shuto Kato, Takemi Li, Yongkai Nakayama, Kosuke Wang, Zhiwei Souma, Seigo Ozawa, Kenichi Kitamura, Miho Horiba, Koji Kumigashira, Hiroshi Takahashi, Takashi Yao, Yugui Sato, Takafumi |
description | Kagome superconductors AV3Sb5 (A = K, Rb, Cs) exhibit a characteristic superconducting and charge-density wave (CDW) phase diagram upon carrier doping and chemical substitution. However, the key electronic states responsible for such a phase diagram have yet to be clarified. Here we report a systematic micro-focused angle-resolved photoemission spectroscopy (ARPES) study of Cs(V1-xCrx)3Sb5 as a function of Cr content x, where Cr substitution causes monotonic reduction of superconducting and CDW transition temperatures. We found that the V-derived bands forming saddle points at the M point and Dirac nodes along high-symmetry cuts show an energy shift due to electron doping by Cr substitution, whereas the Sb-derived electron band at the Gamma point remains almost unchanged, signifying an orbital-selective band shift. We also found that band doubling associated with the emergence of three-dimensional CDW identified at x = 0 vanishes at x = 0.25, in line with the disappearance of CDW. A comparison of band diagrams among Ti-, Nb-, and Cr-substituted Cs(V1-xCrx)3Sb5 suggests the importance to simultaneously take into account the two saddle points at the M point and their proximity to the Fermi energy, to understand the complex phase diagram against carrier doping and chemical pressure. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3075790613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075790613</sourcerecordid><originalsourceid>FETCH-proquest_journals_30757906133</originalsourceid><addsrcrecordid>eNqNjM1KAzEURkNBsGjf4YIbXQxkEqdTu3RaEdwI059luXbSaco0t94ktY_hI5uKC5ddfQfOx-mJvtI6z0aPSl2Lgfc7KaUalqoodF98T4_UxWDJAW3gGV0DdeC4DpENWAcIb9jS3kAdD4bX5JrkiKHy94s8O1V8etD1RzGGGX0hNzB39mjYY5eoSRBS0br2HK8mS_jt_yud1fsWvYGJxZZx72_F1QY7bwZ_eyPuXqaz6jU7MH1G48NqR5FdUisty6J8ksNc68teP9yFVUY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075790613</pqid></control><display><type>article</type><title>Evolution of Band Structure in a Kagome Superconductor Cs(V1-xCrx)3Sb5: Toward Universal Understanding of CDW and Superconducting Phase Diagrams</title><source>Publicly Available Content (ProQuest)</source><creator>Suzuki, Shuto ; Kato, Takemi ; Li, Yongkai ; Nakayama, Kosuke ; Wang, Zhiwei ; Souma, Seigo ; Ozawa, Kenichi ; Kitamura, Miho ; Horiba, Koji ; Kumigashira, Hiroshi ; Takahashi, Takashi ; Yao, Yugui ; Sato, Takafumi</creator><creatorcontrib>Suzuki, Shuto ; Kato, Takemi ; Li, Yongkai ; Nakayama, Kosuke ; Wang, Zhiwei ; Souma, Seigo ; Ozawa, Kenichi ; Kitamura, Miho ; Horiba, Koji ; Kumigashira, Hiroshi ; Takahashi, Takashi ; Yao, Yugui ; Sato, Takafumi</creatorcontrib><description>Kagome superconductors AV3Sb5 (A = K, Rb, Cs) exhibit a characteristic superconducting and charge-density wave (CDW) phase diagram upon carrier doping and chemical substitution. However, the key electronic states responsible for such a phase diagram have yet to be clarified. Here we report a systematic micro-focused angle-resolved photoemission spectroscopy (ARPES) study of Cs(V1-xCrx)3Sb5 as a function of Cr content x, where Cr substitution causes monotonic reduction of superconducting and CDW transition temperatures. We found that the V-derived bands forming saddle points at the M point and Dirac nodes along high-symmetry cuts show an energy shift due to electron doping by Cr substitution, whereas the Sb-derived electron band at the Gamma point remains almost unchanged, signifying an orbital-selective band shift. We also found that band doubling associated with the emergence of three-dimensional CDW identified at x = 0 vanishes at x = 0.25, in line with the disappearance of CDW. A comparison of band diagrams among Ti-, Nb-, and Cr-substituted Cs(V1-xCrx)3Sb5 suggests the importance to simultaneously take into account the two saddle points at the M point and their proximity to the Fermi energy, to understand the complex phase diagram against carrier doping and chemical pressure.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cesium ; Charge density waves ; Chromium ; Doping ; Electron states ; Materials substitution ; Phase diagrams ; Photoelectric emission ; Saddle points ; Superconductivity ; Superconductors</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3075790613?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Suzuki, Shuto</creatorcontrib><creatorcontrib>Kato, Takemi</creatorcontrib><creatorcontrib>Li, Yongkai</creatorcontrib><creatorcontrib>Nakayama, Kosuke</creatorcontrib><creatorcontrib>Wang, Zhiwei</creatorcontrib><creatorcontrib>Souma, Seigo</creatorcontrib><creatorcontrib>Ozawa, Kenichi</creatorcontrib><creatorcontrib>Kitamura, Miho</creatorcontrib><creatorcontrib>Horiba, Koji</creatorcontrib><creatorcontrib>Kumigashira, Hiroshi</creatorcontrib><creatorcontrib>Takahashi, Takashi</creatorcontrib><creatorcontrib>Yao, Yugui</creatorcontrib><creatorcontrib>Sato, Takafumi</creatorcontrib><title>Evolution of Band Structure in a Kagome Superconductor Cs(V1-xCrx)3Sb5: Toward Universal Understanding of CDW and Superconducting Phase Diagrams</title><title>arXiv.org</title><description>Kagome superconductors AV3Sb5 (A = K, Rb, Cs) exhibit a characteristic superconducting and charge-density wave (CDW) phase diagram upon carrier doping and chemical substitution. However, the key electronic states responsible for such a phase diagram have yet to be clarified. Here we report a systematic micro-focused angle-resolved photoemission spectroscopy (ARPES) study of Cs(V1-xCrx)3Sb5 as a function of Cr content x, where Cr substitution causes monotonic reduction of superconducting and CDW transition temperatures. We found that the V-derived bands forming saddle points at the M point and Dirac nodes along high-symmetry cuts show an energy shift due to electron doping by Cr substitution, whereas the Sb-derived electron band at the Gamma point remains almost unchanged, signifying an orbital-selective band shift. We also found that band doubling associated with the emergence of three-dimensional CDW identified at x = 0 vanishes at x = 0.25, in line with the disappearance of CDW. A comparison of band diagrams among Ti-, Nb-, and Cr-substituted Cs(V1-xCrx)3Sb5 suggests the importance to simultaneously take into account the two saddle points at the M point and their proximity to the Fermi energy, to understand the complex phase diagram against carrier doping and chemical pressure.</description><subject>Cesium</subject><subject>Charge density waves</subject><subject>Chromium</subject><subject>Doping</subject><subject>Electron states</subject><subject>Materials substitution</subject><subject>Phase diagrams</subject><subject>Photoelectric emission</subject><subject>Saddle points</subject><subject>Superconductivity</subject><subject>Superconductors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjM1KAzEURkNBsGjf4YIbXQxkEqdTu3RaEdwI059luXbSaco0t94ktY_hI5uKC5ddfQfOx-mJvtI6z0aPSl2Lgfc7KaUalqoodF98T4_UxWDJAW3gGV0DdeC4DpENWAcIb9jS3kAdD4bX5JrkiKHy94s8O1V8etD1RzGGGX0hNzB39mjYY5eoSRBS0br2HK8mS_jt_yud1fsWvYGJxZZx72_F1QY7bwZ_eyPuXqaz6jU7MH1G48NqR5FdUisty6J8ksNc68teP9yFVUY</recordid><startdate>20240703</startdate><enddate>20240703</enddate><creator>Suzuki, Shuto</creator><creator>Kato, Takemi</creator><creator>Li, Yongkai</creator><creator>Nakayama, Kosuke</creator><creator>Wang, Zhiwei</creator><creator>Souma, Seigo</creator><creator>Ozawa, Kenichi</creator><creator>Kitamura, Miho</creator><creator>Horiba, Koji</creator><creator>Kumigashira, Hiroshi</creator><creator>Takahashi, Takashi</creator><creator>Yao, Yugui</creator><creator>Sato, Takafumi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240703</creationdate><title>Evolution of Band Structure in a Kagome Superconductor Cs(V1-xCrx)3Sb5: Toward Universal Understanding of CDW and Superconducting Phase Diagrams</title><author>Suzuki, Shuto ; Kato, Takemi ; Li, Yongkai ; Nakayama, Kosuke ; Wang, Zhiwei ; Souma, Seigo ; Ozawa, Kenichi ; Kitamura, Miho ; Horiba, Koji ; Kumigashira, Hiroshi ; Takahashi, Takashi ; Yao, Yugui ; Sato, Takafumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30757906133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cesium</topic><topic>Charge density waves</topic><topic>Chromium</topic><topic>Doping</topic><topic>Electron states</topic><topic>Materials substitution</topic><topic>Phase diagrams</topic><topic>Photoelectric emission</topic><topic>Saddle points</topic><topic>Superconductivity</topic><topic>Superconductors</topic><toplevel>online_resources</toplevel><creatorcontrib>Suzuki, Shuto</creatorcontrib><creatorcontrib>Kato, Takemi</creatorcontrib><creatorcontrib>Li, Yongkai</creatorcontrib><creatorcontrib>Nakayama, Kosuke</creatorcontrib><creatorcontrib>Wang, Zhiwei</creatorcontrib><creatorcontrib>Souma, Seigo</creatorcontrib><creatorcontrib>Ozawa, Kenichi</creatorcontrib><creatorcontrib>Kitamura, Miho</creatorcontrib><creatorcontrib>Horiba, Koji</creatorcontrib><creatorcontrib>Kumigashira, Hiroshi</creatorcontrib><creatorcontrib>Takahashi, Takashi</creatorcontrib><creatorcontrib>Yao, Yugui</creatorcontrib><creatorcontrib>Sato, Takafumi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suzuki, Shuto</au><au>Kato, Takemi</au><au>Li, Yongkai</au><au>Nakayama, Kosuke</au><au>Wang, Zhiwei</au><au>Souma, Seigo</au><au>Ozawa, Kenichi</au><au>Kitamura, Miho</au><au>Horiba, Koji</au><au>Kumigashira, Hiroshi</au><au>Takahashi, Takashi</au><au>Yao, Yugui</au><au>Sato, Takafumi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Evolution of Band Structure in a Kagome Superconductor Cs(V1-xCrx)3Sb5: Toward Universal Understanding of CDW and Superconducting Phase Diagrams</atitle><jtitle>arXiv.org</jtitle><date>2024-07-03</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Kagome superconductors AV3Sb5 (A = K, Rb, Cs) exhibit a characteristic superconducting and charge-density wave (CDW) phase diagram upon carrier doping and chemical substitution. However, the key electronic states responsible for such a phase diagram have yet to be clarified. Here we report a systematic micro-focused angle-resolved photoemission spectroscopy (ARPES) study of Cs(V1-xCrx)3Sb5 as a function of Cr content x, where Cr substitution causes monotonic reduction of superconducting and CDW transition temperatures. We found that the V-derived bands forming saddle points at the M point and Dirac nodes along high-symmetry cuts show an energy shift due to electron doping by Cr substitution, whereas the Sb-derived electron band at the Gamma point remains almost unchanged, signifying an orbital-selective band shift. We also found that band doubling associated with the emergence of three-dimensional CDW identified at x = 0 vanishes at x = 0.25, in line with the disappearance of CDW. A comparison of band diagrams among Ti-, Nb-, and Cr-substituted Cs(V1-xCrx)3Sb5 suggests the importance to simultaneously take into account the two saddle points at the M point and their proximity to the Fermi energy, to understand the complex phase diagram against carrier doping and chemical pressure.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3075790613 |
source | Publicly Available Content (ProQuest) |
subjects | Cesium Charge density waves Chromium Doping Electron states Materials substitution Phase diagrams Photoelectric emission Saddle points Superconductivity Superconductors |
title | Evolution of Band Structure in a Kagome Superconductor Cs(V1-xCrx)3Sb5: Toward Universal Understanding of CDW and Superconducting Phase Diagrams |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A53%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Evolution%20of%20Band%20Structure%20in%20a%20Kagome%20Superconductor%20Cs(V1-xCrx)3Sb5:%20Toward%20Universal%20Understanding%20of%20CDW%20and%20Superconducting%20Phase%20Diagrams&rft.jtitle=arXiv.org&rft.au=Suzuki,%20Shuto&rft.date=2024-07-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3075790613%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30757906133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3075790613&rft_id=info:pmid/&rfr_iscdi=true |