Loading…

Realization of Anosov Diffeomorphisms on the Torus

We study area preserving Anosov maps on the two-dimensional torus within a fixed homotopy class. We show that the set of pressure functions for Anosov diffeomorphisms with respect to the geometric potential is equal to the set of pressure functions for the linear Anosov automorphism with respect to...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-07
Main Authors: Kucherenko, Tamara, Quas, Anthony
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kucherenko, Tamara
Quas, Anthony
description We study area preserving Anosov maps on the two-dimensional torus within a fixed homotopy class. We show that the set of pressure functions for Anosov diffeomorphisms with respect to the geometric potential is equal to the set of pressure functions for the linear Anosov automorphism with respect to H\"{o}lder potentials. We use this result to provide a negative answer to the \(C^{1+\alpha}\) version of the question posed by Rodriguez Hertz on whether two homotopic area preserving \(C^\infty\) Anosov difeomorphisms whose geometric potentials have identical pressure functions must be \(C^\infty\) conjugate.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3075794565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075794565</sourcerecordid><originalsourceid>FETCH-proquest_journals_30757945653</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCkpNzMmsSizJzM9TyE9TcMzLL84vU3DJTEtLzc_NLyrIyCzOLVYASpZkpCqE5BeVFvMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyxgbmpuaWJqZmpMXGqAPUENBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075794565</pqid></control><display><type>article</type><title>Realization of Anosov Diffeomorphisms on the Torus</title><source>Publicly Available Content Database</source><creator>Kucherenko, Tamara ; Quas, Anthony</creator><creatorcontrib>Kucherenko, Tamara ; Quas, Anthony</creatorcontrib><description>We study area preserving Anosov maps on the two-dimensional torus within a fixed homotopy class. We show that the set of pressure functions for Anosov diffeomorphisms with respect to the geometric potential is equal to the set of pressure functions for the linear Anosov automorphism with respect to H\"{o}lder potentials. We use this result to provide a negative answer to the \(C^{1+\alpha}\) version of the question posed by Rodriguez Hertz on whether two homotopic area preserving \(C^\infty\) Anosov difeomorphisms whose geometric potentials have identical pressure functions must be \(C^\infty\) conjugate.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Automorphisms ; Isomorphism ; Toruses</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3075794565?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Kucherenko, Tamara</creatorcontrib><creatorcontrib>Quas, Anthony</creatorcontrib><title>Realization of Anosov Diffeomorphisms on the Torus</title><title>arXiv.org</title><description>We study area preserving Anosov maps on the two-dimensional torus within a fixed homotopy class. We show that the set of pressure functions for Anosov diffeomorphisms with respect to the geometric potential is equal to the set of pressure functions for the linear Anosov automorphism with respect to H\"{o}lder potentials. We use this result to provide a negative answer to the \(C^{1+\alpha}\) version of the question posed by Rodriguez Hertz on whether two homotopic area preserving \(C^\infty\) Anosov difeomorphisms whose geometric potentials have identical pressure functions must be \(C^\infty\) conjugate.</description><subject>Automorphisms</subject><subject>Isomorphism</subject><subject>Toruses</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCkpNzMmsSizJzM9TyE9TcMzLL84vU3DJTEtLzc_NLyrIyCzOLVYASpZkpCqE5BeVFvMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyxgbmpuaWJqZmpMXGqAPUENBQ</recordid><startdate>20240703</startdate><enddate>20240703</enddate><creator>Kucherenko, Tamara</creator><creator>Quas, Anthony</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240703</creationdate><title>Realization of Anosov Diffeomorphisms on the Torus</title><author>Kucherenko, Tamara ; Quas, Anthony</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30757945653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automorphisms</topic><topic>Isomorphism</topic><topic>Toruses</topic><toplevel>online_resources</toplevel><creatorcontrib>Kucherenko, Tamara</creatorcontrib><creatorcontrib>Quas, Anthony</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kucherenko, Tamara</au><au>Quas, Anthony</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Realization of Anosov Diffeomorphisms on the Torus</atitle><jtitle>arXiv.org</jtitle><date>2024-07-03</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We study area preserving Anosov maps on the two-dimensional torus within a fixed homotopy class. We show that the set of pressure functions for Anosov diffeomorphisms with respect to the geometric potential is equal to the set of pressure functions for the linear Anosov automorphism with respect to H\"{o}lder potentials. We use this result to provide a negative answer to the \(C^{1+\alpha}\) version of the question posed by Rodriguez Hertz on whether two homotopic area preserving \(C^\infty\) Anosov difeomorphisms whose geometric potentials have identical pressure functions must be \(C^\infty\) conjugate.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_3075794565
source Publicly Available Content Database
subjects Automorphisms
Isomorphism
Toruses
title Realization of Anosov Diffeomorphisms on the Torus
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A39%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Realization%20of%20Anosov%20Diffeomorphisms%20on%20the%20Torus&rft.jtitle=arXiv.org&rft.au=Kucherenko,%20Tamara&rft.date=2024-07-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3075794565%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30757945653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3075794565&rft_id=info:pmid/&rfr_iscdi=true