Loading…

High‐Throughput Fabrication of Phosphor‐In‐Silica Glass via Injection Molding

Phosphor‐in‐silica glass (PiSG) composite is an excellent candidate for highly stable and efficient color converter in high power white light emitting diodes (wLEDs). However, the high‐throughput fabrication of PiSG with different shapes is still challenging for current techniques. Here this study r...

Full description

Saved in:
Bibliographic Details
Published in:Advanced optical materials 2024-07, Vol.12 (19), p.n/a
Main Authors: Mohamed, Moushira. A., Ali, Mohamed. A., Shaorun, Guo, Liu, Xiaofeng, Qiu, Jianrong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Phosphor‐in‐silica glass (PiSG) composite is an excellent candidate for highly stable and efficient color converter in high power white light emitting diodes (wLEDs). However, the high‐throughput fabrication of PiSG with different shapes is still challenging for current techniques. Here this study reports the manufacture of transparent PiSG based on YAG:Ce (Y3Al5O12:Ce3+) using injection molding (IM) technique. In this approach, different shapes of centimeter‐sized YAG:Ce‐PiSG pieces are fabricated by using IM of a YAG:Ce/amorphous silica nanoparticles/thermoplastic polymer composite at low temperatures (@ 150 °C) which afterward are debound (@ 600 °C) and densified (@ 1150 °C). Interestingly, the molding time to produce YAG:Ce/silica/polymer green parts is 5 s per piece, implying the capability for high‐throughput production of YAG:Ce‐PiSG. Furthermore, the as‐fabricated YAG:Ce‐PiSG exhibits high luminescence efficiency (>91%) and high chemical/thermal stabilities. Accordingly, high power wLEDs (10 W) are fabricated using the YAG:Ce‐PiSG which demonstrates high luminous efficiency of 144 lm W−1 at 50 mA, closing to that of the wLEDs fabricated by expensive YAG:Ce ceramic plate (i.e., 149 lm W−1 @ 50 mA). The work provides a facile and universal approach for industry‐scale production of PiSG that can be promising for various photonic applications. Different kinds of phosphor‐in‐silica glass (PiSG) are fabricated with high productivity using the classical injection molding technique. The as‐fabricated samples can be produced with different shapes and within short time. The as‐fabricated PiSG possesses excellent optical properties and high chemical and thermal stabilities, making them promising materials for photonic applications such as lighting and bioimaging.
ISSN:2195-1071
2195-1071
DOI:10.1002/adom.202400323