Loading…

Water vapor permeability of polymeric packaging materials for novel glass‐free photovoltaic applications

Moisture ingress in photovoltaic (PV) modules is a critical factor for performance degradation, therefore, a low water vapor transmission rate (WVTR) is highly desirable for polymers used to embed the solar cells, including backsheets, frontsheets, and encapsulants. With the advent of glass‐free mod...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science 2024-08, Vol.141 (31)
Main Authors: Babin, Markus, Eder, Gabriele C., Voronko, Yuliya, Oreski, Gernot
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c182t-627424004a2b52f18b92c72a0214792e34980ca9167fe37e337e17e4c3b37fde3
container_end_page
container_issue 31
container_start_page
container_title Journal of applied polymer science
container_volume 141
creator Babin, Markus
Eder, Gabriele C.
Voronko, Yuliya
Oreski, Gernot
description Moisture ingress in photovoltaic (PV) modules is a critical factor for performance degradation, therefore, a low water vapor transmission rate (WVTR) is highly desirable for polymers used to embed the solar cells, including backsheets, frontsheets, and encapsulants. With the advent of glass‐free modules for integration in building envelopes and vehicles, there is growing interest in polymer composite structures with embedded glass fibers to enhance rigidity. Furthermore, due to environmental concerns, there is increased interest in fluorine‐free polymers for PV applications. In this work, 21 samples with different base polymers, coatings, and/or surface treatments are investigated and their WVTRs are measured. The results show no good alternatives to existing fluoride‐based polymers/coatings for reducing WVTRs of backsheets and frontsheets among the investigated samples. In addition, glass fibers embedded within polymers to provide increased stability to backsheets or in composites for lightweight PV are shown to significantly increase WVTRs, especially, when fibers are not properly embedded, providing additional diffusion pathways for moisture ingress.
doi_str_mv 10.1002/app.55733
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3076473842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3076473842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-627424004a2b52f18b92c72a0214792e34980ca9167fe37e337e17e4c3b37fde3</originalsourceid><addsrcrecordid>eNotkE1OwzAQhS0EEqWw4AaWWLFI8V_iZIkqKEiV2IBYRo4ZF5ckNrZbqTuOwBk5CS5lMZrFvG_mzUPokpIZJYTdKO9nZSk5P0ITShpZiIrVx2iSZ7Som6Y8RWcxrgmhtCTVBK1fVYKAt8q7gD2EAVRne5t22BnsXb8bIFiNvdIfamXHFR72eqv6iE0mRreFHq96FePP17cJANi_u-S2rk8qc9lOb7VK1o3xHJ2YzMHFf5-il_u75_lDsXxaPM5vl4WmNUtFxaRgghChWFcyQ-uuYVoylR8QsmHARVMTrRpaSQNcAs9FJQjNOy7NG_Apujrs9cF9biCmdu02YcwnW05kJSSvBcuq64NKBxdjANP6YAcVdi0l7T7KNntv_6Lkv886aPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3076473842</pqid></control><display><type>article</type><title>Water vapor permeability of polymeric packaging materials for novel glass‐free photovoltaic applications</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Babin, Markus ; Eder, Gabriele C. ; Voronko, Yuliya ; Oreski, Gernot</creator><creatorcontrib>Babin, Markus ; Eder, Gabriele C. ; Voronko, Yuliya ; Oreski, Gernot</creatorcontrib><description>Moisture ingress in photovoltaic (PV) modules is a critical factor for performance degradation, therefore, a low water vapor transmission rate (WVTR) is highly desirable for polymers used to embed the solar cells, including backsheets, frontsheets, and encapsulants. With the advent of glass‐free modules for integration in building envelopes and vehicles, there is growing interest in polymer composite structures with embedded glass fibers to enhance rigidity. Furthermore, due to environmental concerns, there is increased interest in fluorine‐free polymers for PV applications. In this work, 21 samples with different base polymers, coatings, and/or surface treatments are investigated and their WVTRs are measured. The results show no good alternatives to existing fluoride‐based polymers/coatings for reducing WVTRs of backsheets and frontsheets among the investigated samples. In addition, glass fibers embedded within polymers to provide increased stability to backsheets or in composites for lightweight PV are shown to significantly increase WVTRs, especially, when fibers are not properly embedded, providing additional diffusion pathways for moisture ingress.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.55733</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Building envelopes ; Coatings ; Composite structures ; Fluorine ; Glass fiber reinforced plastics ; Modules ; Moisture ; Performance degradation ; Photovoltaic cells ; Polymer matrix composites ; Polymers ; Solar cells ; Surface treatment ; Water vapor</subject><ispartof>Journal of applied polymer science, 2024-08, Vol.141 (31)</ispartof><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-627424004a2b52f18b92c72a0214792e34980ca9167fe37e337e17e4c3b37fde3</cites><orcidid>0000-0002-1889-2540 ; 0000-0003-0397-8453 ; 0000-0003-4223-9047</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Babin, Markus</creatorcontrib><creatorcontrib>Eder, Gabriele C.</creatorcontrib><creatorcontrib>Voronko, Yuliya</creatorcontrib><creatorcontrib>Oreski, Gernot</creatorcontrib><title>Water vapor permeability of polymeric packaging materials for novel glass‐free photovoltaic applications</title><title>Journal of applied polymer science</title><description>Moisture ingress in photovoltaic (PV) modules is a critical factor for performance degradation, therefore, a low water vapor transmission rate (WVTR) is highly desirable for polymers used to embed the solar cells, including backsheets, frontsheets, and encapsulants. With the advent of glass‐free modules for integration in building envelopes and vehicles, there is growing interest in polymer composite structures with embedded glass fibers to enhance rigidity. Furthermore, due to environmental concerns, there is increased interest in fluorine‐free polymers for PV applications. In this work, 21 samples with different base polymers, coatings, and/or surface treatments are investigated and their WVTRs are measured. The results show no good alternatives to existing fluoride‐based polymers/coatings for reducing WVTRs of backsheets and frontsheets among the investigated samples. In addition, glass fibers embedded within polymers to provide increased stability to backsheets or in composites for lightweight PV are shown to significantly increase WVTRs, especially, when fibers are not properly embedded, providing additional diffusion pathways for moisture ingress.</description><subject>Building envelopes</subject><subject>Coatings</subject><subject>Composite structures</subject><subject>Fluorine</subject><subject>Glass fiber reinforced plastics</subject><subject>Modules</subject><subject>Moisture</subject><subject>Performance degradation</subject><subject>Photovoltaic cells</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Solar cells</subject><subject>Surface treatment</subject><subject>Water vapor</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkE1OwzAQhS0EEqWw4AaWWLFI8V_iZIkqKEiV2IBYRo4ZF5ckNrZbqTuOwBk5CS5lMZrFvG_mzUPokpIZJYTdKO9nZSk5P0ITShpZiIrVx2iSZ7Som6Y8RWcxrgmhtCTVBK1fVYKAt8q7gD2EAVRne5t22BnsXb8bIFiNvdIfamXHFR72eqv6iE0mRreFHq96FePP17cJANi_u-S2rk8qc9lOb7VK1o3xHJ2YzMHFf5-il_u75_lDsXxaPM5vl4WmNUtFxaRgghChWFcyQ-uuYVoylR8QsmHARVMTrRpaSQNcAs9FJQjNOy7NG_Apujrs9cF9biCmdu02YcwnW05kJSSvBcuq64NKBxdjANP6YAcVdi0l7T7KNntv_6Lkv886aPA</recordid><startdate>20240815</startdate><enddate>20240815</enddate><creator>Babin, Markus</creator><creator>Eder, Gabriele C.</creator><creator>Voronko, Yuliya</creator><creator>Oreski, Gernot</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-1889-2540</orcidid><orcidid>https://orcid.org/0000-0003-0397-8453</orcidid><orcidid>https://orcid.org/0000-0003-4223-9047</orcidid></search><sort><creationdate>20240815</creationdate><title>Water vapor permeability of polymeric packaging materials for novel glass‐free photovoltaic applications</title><author>Babin, Markus ; Eder, Gabriele C. ; Voronko, Yuliya ; Oreski, Gernot</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-627424004a2b52f18b92c72a0214792e34980ca9167fe37e337e17e4c3b37fde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Building envelopes</topic><topic>Coatings</topic><topic>Composite structures</topic><topic>Fluorine</topic><topic>Glass fiber reinforced plastics</topic><topic>Modules</topic><topic>Moisture</topic><topic>Performance degradation</topic><topic>Photovoltaic cells</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Solar cells</topic><topic>Surface treatment</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babin, Markus</creatorcontrib><creatorcontrib>Eder, Gabriele C.</creatorcontrib><creatorcontrib>Voronko, Yuliya</creatorcontrib><creatorcontrib>Oreski, Gernot</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babin, Markus</au><au>Eder, Gabriele C.</au><au>Voronko, Yuliya</au><au>Oreski, Gernot</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water vapor permeability of polymeric packaging materials for novel glass‐free photovoltaic applications</atitle><jtitle>Journal of applied polymer science</jtitle><date>2024-08-15</date><risdate>2024</risdate><volume>141</volume><issue>31</issue><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>Moisture ingress in photovoltaic (PV) modules is a critical factor for performance degradation, therefore, a low water vapor transmission rate (WVTR) is highly desirable for polymers used to embed the solar cells, including backsheets, frontsheets, and encapsulants. With the advent of glass‐free modules for integration in building envelopes and vehicles, there is growing interest in polymer composite structures with embedded glass fibers to enhance rigidity. Furthermore, due to environmental concerns, there is increased interest in fluorine‐free polymers for PV applications. In this work, 21 samples with different base polymers, coatings, and/or surface treatments are investigated and their WVTRs are measured. The results show no good alternatives to existing fluoride‐based polymers/coatings for reducing WVTRs of backsheets and frontsheets among the investigated samples. In addition, glass fibers embedded within polymers to provide increased stability to backsheets or in composites for lightweight PV are shown to significantly increase WVTRs, especially, when fibers are not properly embedded, providing additional diffusion pathways for moisture ingress.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/app.55733</doi><orcidid>https://orcid.org/0000-0002-1889-2540</orcidid><orcidid>https://orcid.org/0000-0003-0397-8453</orcidid><orcidid>https://orcid.org/0000-0003-4223-9047</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2024-08, Vol.141 (31)
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_journals_3076473842
source Wiley-Blackwell Read & Publish Collection
subjects Building envelopes
Coatings
Composite structures
Fluorine
Glass fiber reinforced plastics
Modules
Moisture
Performance degradation
Photovoltaic cells
Polymer matrix composites
Polymers
Solar cells
Surface treatment
Water vapor
title Water vapor permeability of polymeric packaging materials for novel glass‐free photovoltaic applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A37%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20vapor%20permeability%20of%20polymeric%20packaging%20materials%20for%20novel%20glass%E2%80%90free%20photovoltaic%20applications&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Babin,%20Markus&rft.date=2024-08-15&rft.volume=141&rft.issue=31&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.55733&rft_dat=%3Cproquest_cross%3E3076473842%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c182t-627424004a2b52f18b92c72a0214792e34980ca9167fe37e337e17e4c3b37fde3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3076473842&rft_id=info:pmid/&rfr_iscdi=true