Loading…

Riemann–Hilbert approach, dark solitons and double‐pole solutions for Lakshmanan–Porsezian–Daniel equation in an optical fiber, a ferromagnetic spin or a protein

Inverse scattering transform for the defocusing Lakshmanan–Porsezian–Daniel equation with nonzero boundary condition is constructed via the Riemann–Hilbert approach. Since poles of the associated reflection coefficient are simple, N$N$‐dark soliton solutions corresponding to N$N$ simple poles are co...

Full description

Saved in:
Bibliographic Details
Published in:Zeitschrift für angewandte Mathematik und Mechanik 2024-07, Vol.104 (7), p.n/a
Main Authors: Chen, Su‐Su, Tian, Bo, Tian, He‐Yuan, Hu, Cong‐Cong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3177-42003368ad7a0943d4d142f0f137a867d9276eacddbadda63167b8dec10bdacf3
cites cdi_FETCH-LOGICAL-c3177-42003368ad7a0943d4d142f0f137a867d9276eacddbadda63167b8dec10bdacf3
container_end_page n/a
container_issue 7
container_start_page
container_title Zeitschrift für angewandte Mathematik und Mechanik
container_volume 104
creator Chen, Su‐Su
Tian, Bo
Tian, He‐Yuan
Hu, Cong‐Cong
description Inverse scattering transform for the defocusing Lakshmanan–Porsezian–Daniel equation with nonzero boundary condition is constructed via the Riemann–Hilbert approach. Since poles of the associated reflection coefficient are simple, N$N$‐dark soliton solutions corresponding to N$N$ simple poles are constructed. For N$N$‐dark soliton solutions, results show that the soliton amplitude and width are not affected by the strength of the higher‐order linear and nonlinear effects γ$\gamma$, but soliton velocity has a linear correlation with γ$\gamma$; the interactions between the two‐dark solitons and among the three‐dark solitons are elastic and experience phase and position shifts. Besides, asymptotic analysis of the double‐pole solutions for the focusing Lakshmanan–Porsezian–Daniel equation with nonzero boundary condition is presented. Different from N$N$‐dark soliton solutions which locate in the straight lines and experience position shift after the interaction, the double‐pole solutions diverge from each other logarithmically and experience no position shift after the interaction.
doi_str_mv 10.1002/zamm.202200417
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3076787972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3076787972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3177-42003368ad7a0943d4d142f0f137a867d9276eacddbadda63167b8dec10bdacf3</originalsourceid><addsrcrecordid>eNqFUbtOwzAUtRBIlMfKbIm1KX6EuBmr8pSKQAgWlugmdsA0sYOdCJWJT0DiB5j5DD6FL8GhCEame3XPy9ZBaIeSESWE7T1BXY8YYYyQmIoVNKD7jEYxIXQVDcItjhhLxDra8P6ehGtK-QC9X2pVgzGfz68nusqVazE0jbNQ3A2xBDfH3la6tcZjMBJL2-WV-nx-aWyleqhrdY-V1uEZzP1d8ILe7MI6r570934ARqsKq4cOevbHmzbBDNum1QVUuNQhdogBl8o5W8OtUQHAvgm0YAs4PKdV2myhtRIqr7Z_5ia6Pjq8mp5Es_Pj0-lkFhWcChHF4f-cJ2OQAkgacxlLGrOSlJQLGCdCpkwkCgopc5ASEk4TkY-lKijJJRQl30S7S9-Q-9Ap32b3tnMmRGaciESMRSpYYI2WrMJZ750qs8bpGtwioyTr-8j6PrLfPoIgXQoedaUW_7Czm8nZ2Z_2C1tcmDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3076787972</pqid></control><display><type>article</type><title>Riemann–Hilbert approach, dark solitons and double‐pole solutions for Lakshmanan–Porsezian–Daniel equation in an optical fiber, a ferromagnetic spin or a protein</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Chen, Su‐Su ; Tian, Bo ; Tian, He‐Yuan ; Hu, Cong‐Cong</creator><creatorcontrib>Chen, Su‐Su ; Tian, Bo ; Tian, He‐Yuan ; Hu, Cong‐Cong</creatorcontrib><description>Inverse scattering transform for the defocusing Lakshmanan–Porsezian–Daniel equation with nonzero boundary condition is constructed via the Riemann–Hilbert approach. Since poles of the associated reflection coefficient are simple, N$N$‐dark soliton solutions corresponding to N$N$ simple poles are constructed. For N$N$‐dark soliton solutions, results show that the soliton amplitude and width are not affected by the strength of the higher‐order linear and nonlinear effects γ$\gamma$, but soliton velocity has a linear correlation with γ$\gamma$; the interactions between the two‐dark solitons and among the three‐dark solitons are elastic and experience phase and position shifts. Besides, asymptotic analysis of the double‐pole solutions for the focusing Lakshmanan–Porsezian–Daniel equation with nonzero boundary condition is presented. Different from N$N$‐dark soliton solutions which locate in the straight lines and experience position shift after the interaction, the double‐pole solutions diverge from each other logarithmically and experience no position shift after the interaction.</description><identifier>ISSN: 0044-2267</identifier><identifier>EISSN: 1521-4001</identifier><identifier>DOI: 10.1002/zamm.202200417</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Boundary conditions ; Defocusing ; Ferromagnetism ; Inverse scattering ; Optical fibers ; Poles ; Reflectance ; Solitary waves ; Straight lines</subject><ispartof>Zeitschrift für angewandte Mathematik und Mechanik, 2024-07, Vol.104 (7), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3177-42003368ad7a0943d4d142f0f137a867d9276eacddbadda63167b8dec10bdacf3</citedby><cites>FETCH-LOGICAL-c3177-42003368ad7a0943d4d142f0f137a867d9276eacddbadda63167b8dec10bdacf3</cites><orcidid>0000-0002-5608-7956</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Su‐Su</creatorcontrib><creatorcontrib>Tian, Bo</creatorcontrib><creatorcontrib>Tian, He‐Yuan</creatorcontrib><creatorcontrib>Hu, Cong‐Cong</creatorcontrib><title>Riemann–Hilbert approach, dark solitons and double‐pole solutions for Lakshmanan–Porsezian–Daniel equation in an optical fiber, a ferromagnetic spin or a protein</title><title>Zeitschrift für angewandte Mathematik und Mechanik</title><description>Inverse scattering transform for the defocusing Lakshmanan–Porsezian–Daniel equation with nonzero boundary condition is constructed via the Riemann–Hilbert approach. Since poles of the associated reflection coefficient are simple, N$N$‐dark soliton solutions corresponding to N$N$ simple poles are constructed. For N$N$‐dark soliton solutions, results show that the soliton amplitude and width are not affected by the strength of the higher‐order linear and nonlinear effects γ$\gamma$, but soliton velocity has a linear correlation with γ$\gamma$; the interactions between the two‐dark solitons and among the three‐dark solitons are elastic and experience phase and position shifts. Besides, asymptotic analysis of the double‐pole solutions for the focusing Lakshmanan–Porsezian–Daniel equation with nonzero boundary condition is presented. Different from N$N$‐dark soliton solutions which locate in the straight lines and experience position shift after the interaction, the double‐pole solutions diverge from each other logarithmically and experience no position shift after the interaction.</description><subject>Boundary conditions</subject><subject>Defocusing</subject><subject>Ferromagnetism</subject><subject>Inverse scattering</subject><subject>Optical fibers</subject><subject>Poles</subject><subject>Reflectance</subject><subject>Solitary waves</subject><subject>Straight lines</subject><issn>0044-2267</issn><issn>1521-4001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFUbtOwzAUtRBIlMfKbIm1KX6EuBmr8pSKQAgWlugmdsA0sYOdCJWJT0DiB5j5DD6FL8GhCEame3XPy9ZBaIeSESWE7T1BXY8YYYyQmIoVNKD7jEYxIXQVDcItjhhLxDra8P6ehGtK-QC9X2pVgzGfz68nusqVazE0jbNQ3A2xBDfH3la6tcZjMBJL2-WV-nx-aWyleqhrdY-V1uEZzP1d8ILe7MI6r570934ARqsKq4cOevbHmzbBDNum1QVUuNQhdogBl8o5W8OtUQHAvgm0YAs4PKdV2myhtRIqr7Z_5ia6Pjq8mp5Es_Pj0-lkFhWcChHF4f-cJ2OQAkgacxlLGrOSlJQLGCdCpkwkCgopc5ASEk4TkY-lKijJJRQl30S7S9-Q-9Ap32b3tnMmRGaciESMRSpYYI2WrMJZ750qs8bpGtwioyTr-8j6PrLfPoIgXQoedaUW_7Czm8nZ2Z_2C1tcmDg</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Chen, Su‐Su</creator><creator>Tian, Bo</creator><creator>Tian, He‐Yuan</creator><creator>Hu, Cong‐Cong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5608-7956</orcidid></search><sort><creationdate>202407</creationdate><title>Riemann–Hilbert approach, dark solitons and double‐pole solutions for Lakshmanan–Porsezian–Daniel equation in an optical fiber, a ferromagnetic spin or a protein</title><author>Chen, Su‐Su ; Tian, Bo ; Tian, He‐Yuan ; Hu, Cong‐Cong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3177-42003368ad7a0943d4d142f0f137a867d9276eacddbadda63167b8dec10bdacf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary conditions</topic><topic>Defocusing</topic><topic>Ferromagnetism</topic><topic>Inverse scattering</topic><topic>Optical fibers</topic><topic>Poles</topic><topic>Reflectance</topic><topic>Solitary waves</topic><topic>Straight lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Su‐Su</creatorcontrib><creatorcontrib>Tian, Bo</creatorcontrib><creatorcontrib>Tian, He‐Yuan</creatorcontrib><creatorcontrib>Hu, Cong‐Cong</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Su‐Su</au><au>Tian, Bo</au><au>Tian, He‐Yuan</au><au>Hu, Cong‐Cong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Riemann–Hilbert approach, dark solitons and double‐pole solutions for Lakshmanan–Porsezian–Daniel equation in an optical fiber, a ferromagnetic spin or a protein</atitle><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle><date>2024-07</date><risdate>2024</risdate><volume>104</volume><issue>7</issue><epage>n/a</epage><issn>0044-2267</issn><eissn>1521-4001</eissn><abstract>Inverse scattering transform for the defocusing Lakshmanan–Porsezian–Daniel equation with nonzero boundary condition is constructed via the Riemann–Hilbert approach. Since poles of the associated reflection coefficient are simple, N$N$‐dark soliton solutions corresponding to N$N$ simple poles are constructed. For N$N$‐dark soliton solutions, results show that the soliton amplitude and width are not affected by the strength of the higher‐order linear and nonlinear effects γ$\gamma$, but soliton velocity has a linear correlation with γ$\gamma$; the interactions between the two‐dark solitons and among the three‐dark solitons are elastic and experience phase and position shifts. Besides, asymptotic analysis of the double‐pole solutions for the focusing Lakshmanan–Porsezian–Daniel equation with nonzero boundary condition is presented. Different from N$N$‐dark soliton solutions which locate in the straight lines and experience position shift after the interaction, the double‐pole solutions diverge from each other logarithmically and experience no position shift after the interaction.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/zamm.202200417</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-5608-7956</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0044-2267
ispartof Zeitschrift für angewandte Mathematik und Mechanik, 2024-07, Vol.104 (7), p.n/a
issn 0044-2267
1521-4001
language eng
recordid cdi_proquest_journals_3076787972
source Wiley-Blackwell Read & Publish Collection
subjects Boundary conditions
Defocusing
Ferromagnetism
Inverse scattering
Optical fibers
Poles
Reflectance
Solitary waves
Straight lines
title Riemann–Hilbert approach, dark solitons and double‐pole solutions for Lakshmanan–Porsezian–Daniel equation in an optical fiber, a ferromagnetic spin or a protein
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A07%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Riemann%E2%80%93Hilbert%20approach,%20dark%20solitons%20and%20double%E2%80%90pole%20solutions%20for%20Lakshmanan%E2%80%93Porsezian%E2%80%93Daniel%20equation%C2%A0in%20an%20optical%20fiber,%20a%20ferromagnetic%20spin%20or%20a%20protein&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Mechanik&rft.au=Chen,%20Su%E2%80%90Su&rft.date=2024-07&rft.volume=104&rft.issue=7&rft.epage=n/a&rft.issn=0044-2267&rft.eissn=1521-4001&rft_id=info:doi/10.1002/zamm.202200417&rft_dat=%3Cproquest_cross%3E3076787972%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3177-42003368ad7a0943d4d142f0f137a867d9276eacddbadda63167b8dec10bdacf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3076787972&rft_id=info:pmid/&rfr_iscdi=true