Loading…
Riemann–Hilbert approach, dark solitons and double‐pole solutions for Lakshmanan–Porsezian–Daniel equation in an optical fiber, a ferromagnetic spin or a protein
Inverse scattering transform for the defocusing Lakshmanan–Porsezian–Daniel equation with nonzero boundary condition is constructed via the Riemann–Hilbert approach. Since poles of the associated reflection coefficient are simple, N$N$‐dark soliton solutions corresponding to N$N$ simple poles are co...
Saved in:
Published in: | Zeitschrift für angewandte Mathematik und Mechanik 2024-07, Vol.104 (7), p.n/a |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3177-42003368ad7a0943d4d142f0f137a867d9276eacddbadda63167b8dec10bdacf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3177-42003368ad7a0943d4d142f0f137a867d9276eacddbadda63167b8dec10bdacf3 |
container_end_page | n/a |
container_issue | 7 |
container_start_page | |
container_title | Zeitschrift für angewandte Mathematik und Mechanik |
container_volume | 104 |
creator | Chen, Su‐Su Tian, Bo Tian, He‐Yuan Hu, Cong‐Cong |
description | Inverse scattering transform for the defocusing Lakshmanan–Porsezian–Daniel equation with nonzero boundary condition is constructed via the Riemann–Hilbert approach. Since poles of the associated reflection coefficient are simple, N$N$‐dark soliton solutions corresponding to N$N$ simple poles are constructed. For N$N$‐dark soliton solutions, results show that the soliton amplitude and width are not affected by the strength of the higher‐order linear and nonlinear effects γ$\gamma$, but soliton velocity has a linear correlation with γ$\gamma$; the interactions between the two‐dark solitons and among the three‐dark solitons are elastic and experience phase and position shifts. Besides, asymptotic analysis of the double‐pole solutions for the focusing Lakshmanan–Porsezian–Daniel equation with nonzero boundary condition is presented. Different from N$N$‐dark soliton solutions which locate in the straight lines and experience position shift after the interaction, the double‐pole solutions diverge from each other logarithmically and experience no position shift after the interaction. |
doi_str_mv | 10.1002/zamm.202200417 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3076787972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3076787972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3177-42003368ad7a0943d4d142f0f137a867d9276eacddbadda63167b8dec10bdacf3</originalsourceid><addsrcrecordid>eNqFUbtOwzAUtRBIlMfKbIm1KX6EuBmr8pSKQAgWlugmdsA0sYOdCJWJT0DiB5j5DD6FL8GhCEame3XPy9ZBaIeSESWE7T1BXY8YYYyQmIoVNKD7jEYxIXQVDcItjhhLxDra8P6ehGtK-QC9X2pVgzGfz68nusqVazE0jbNQ3A2xBDfH3la6tcZjMBJL2-WV-nx-aWyleqhrdY-V1uEZzP1d8ILe7MI6r570934ARqsKq4cOevbHmzbBDNum1QVUuNQhdogBl8o5W8OtUQHAvgm0YAs4PKdV2myhtRIqr7Z_5ia6Pjq8mp5Es_Pj0-lkFhWcChHF4f-cJ2OQAkgacxlLGrOSlJQLGCdCpkwkCgopc5ASEk4TkY-lKijJJRQl30S7S9-Q-9Ap32b3tnMmRGaciESMRSpYYI2WrMJZ750qs8bpGtwioyTr-8j6PrLfPoIgXQoedaUW_7Czm8nZ2Z_2C1tcmDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3076787972</pqid></control><display><type>article</type><title>Riemann–Hilbert approach, dark solitons and double‐pole solutions for Lakshmanan–Porsezian–Daniel equation in an optical fiber, a ferromagnetic spin or a protein</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Chen, Su‐Su ; Tian, Bo ; Tian, He‐Yuan ; Hu, Cong‐Cong</creator><creatorcontrib>Chen, Su‐Su ; Tian, Bo ; Tian, He‐Yuan ; Hu, Cong‐Cong</creatorcontrib><description>Inverse scattering transform for the defocusing Lakshmanan–Porsezian–Daniel equation with nonzero boundary condition is constructed via the Riemann–Hilbert approach. Since poles of the associated reflection coefficient are simple, N$N$‐dark soliton solutions corresponding to N$N$ simple poles are constructed. For N$N$‐dark soliton solutions, results show that the soliton amplitude and width are not affected by the strength of the higher‐order linear and nonlinear effects γ$\gamma$, but soliton velocity has a linear correlation with γ$\gamma$; the interactions between the two‐dark solitons and among the three‐dark solitons are elastic and experience phase and position shifts. Besides, asymptotic analysis of the double‐pole solutions for the focusing Lakshmanan–Porsezian–Daniel equation with nonzero boundary condition is presented. Different from N$N$‐dark soliton solutions which locate in the straight lines and experience position shift after the interaction, the double‐pole solutions diverge from each other logarithmically and experience no position shift after the interaction.</description><identifier>ISSN: 0044-2267</identifier><identifier>EISSN: 1521-4001</identifier><identifier>DOI: 10.1002/zamm.202200417</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Boundary conditions ; Defocusing ; Ferromagnetism ; Inverse scattering ; Optical fibers ; Poles ; Reflectance ; Solitary waves ; Straight lines</subject><ispartof>Zeitschrift für angewandte Mathematik und Mechanik, 2024-07, Vol.104 (7), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3177-42003368ad7a0943d4d142f0f137a867d9276eacddbadda63167b8dec10bdacf3</citedby><cites>FETCH-LOGICAL-c3177-42003368ad7a0943d4d142f0f137a867d9276eacddbadda63167b8dec10bdacf3</cites><orcidid>0000-0002-5608-7956</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Su‐Su</creatorcontrib><creatorcontrib>Tian, Bo</creatorcontrib><creatorcontrib>Tian, He‐Yuan</creatorcontrib><creatorcontrib>Hu, Cong‐Cong</creatorcontrib><title>Riemann–Hilbert approach, dark solitons and double‐pole solutions for Lakshmanan–Porsezian–Daniel equation in an optical fiber, a ferromagnetic spin or a protein</title><title>Zeitschrift für angewandte Mathematik und Mechanik</title><description>Inverse scattering transform for the defocusing Lakshmanan–Porsezian–Daniel equation with nonzero boundary condition is constructed via the Riemann–Hilbert approach. Since poles of the associated reflection coefficient are simple, N$N$‐dark soliton solutions corresponding to N$N$ simple poles are constructed. For N$N$‐dark soliton solutions, results show that the soliton amplitude and width are not affected by the strength of the higher‐order linear and nonlinear effects γ$\gamma$, but soliton velocity has a linear correlation with γ$\gamma$; the interactions between the two‐dark solitons and among the three‐dark solitons are elastic and experience phase and position shifts. Besides, asymptotic analysis of the double‐pole solutions for the focusing Lakshmanan–Porsezian–Daniel equation with nonzero boundary condition is presented. Different from N$N$‐dark soliton solutions which locate in the straight lines and experience position shift after the interaction, the double‐pole solutions diverge from each other logarithmically and experience no position shift after the interaction.</description><subject>Boundary conditions</subject><subject>Defocusing</subject><subject>Ferromagnetism</subject><subject>Inverse scattering</subject><subject>Optical fibers</subject><subject>Poles</subject><subject>Reflectance</subject><subject>Solitary waves</subject><subject>Straight lines</subject><issn>0044-2267</issn><issn>1521-4001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFUbtOwzAUtRBIlMfKbIm1KX6EuBmr8pSKQAgWlugmdsA0sYOdCJWJT0DiB5j5DD6FL8GhCEame3XPy9ZBaIeSESWE7T1BXY8YYYyQmIoVNKD7jEYxIXQVDcItjhhLxDra8P6ehGtK-QC9X2pVgzGfz68nusqVazE0jbNQ3A2xBDfH3la6tcZjMBJL2-WV-nx-aWyleqhrdY-V1uEZzP1d8ILe7MI6r570934ARqsKq4cOevbHmzbBDNum1QVUuNQhdogBl8o5W8OtUQHAvgm0YAs4PKdV2myhtRIqr7Z_5ia6Pjq8mp5Es_Pj0-lkFhWcChHF4f-cJ2OQAkgacxlLGrOSlJQLGCdCpkwkCgopc5ASEk4TkY-lKijJJRQl30S7S9-Q-9Ap32b3tnMmRGaciESMRSpYYI2WrMJZ750qs8bpGtwioyTr-8j6PrLfPoIgXQoedaUW_7Czm8nZ2Z_2C1tcmDg</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Chen, Su‐Su</creator><creator>Tian, Bo</creator><creator>Tian, He‐Yuan</creator><creator>Hu, Cong‐Cong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5608-7956</orcidid></search><sort><creationdate>202407</creationdate><title>Riemann–Hilbert approach, dark solitons and double‐pole solutions for Lakshmanan–Porsezian–Daniel equation in an optical fiber, a ferromagnetic spin or a protein</title><author>Chen, Su‐Su ; Tian, Bo ; Tian, He‐Yuan ; Hu, Cong‐Cong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3177-42003368ad7a0943d4d142f0f137a867d9276eacddbadda63167b8dec10bdacf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary conditions</topic><topic>Defocusing</topic><topic>Ferromagnetism</topic><topic>Inverse scattering</topic><topic>Optical fibers</topic><topic>Poles</topic><topic>Reflectance</topic><topic>Solitary waves</topic><topic>Straight lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Su‐Su</creatorcontrib><creatorcontrib>Tian, Bo</creatorcontrib><creatorcontrib>Tian, He‐Yuan</creatorcontrib><creatorcontrib>Hu, Cong‐Cong</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Su‐Su</au><au>Tian, Bo</au><au>Tian, He‐Yuan</au><au>Hu, Cong‐Cong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Riemann–Hilbert approach, dark solitons and double‐pole solutions for Lakshmanan–Porsezian–Daniel equation in an optical fiber, a ferromagnetic spin or a protein</atitle><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle><date>2024-07</date><risdate>2024</risdate><volume>104</volume><issue>7</issue><epage>n/a</epage><issn>0044-2267</issn><eissn>1521-4001</eissn><abstract>Inverse scattering transform for the defocusing Lakshmanan–Porsezian–Daniel equation with nonzero boundary condition is constructed via the Riemann–Hilbert approach. Since poles of the associated reflection coefficient are simple, N$N$‐dark soliton solutions corresponding to N$N$ simple poles are constructed. For N$N$‐dark soliton solutions, results show that the soliton amplitude and width are not affected by the strength of the higher‐order linear and nonlinear effects γ$\gamma$, but soliton velocity has a linear correlation with γ$\gamma$; the interactions between the two‐dark solitons and among the three‐dark solitons are elastic and experience phase and position shifts. Besides, asymptotic analysis of the double‐pole solutions for the focusing Lakshmanan–Porsezian–Daniel equation with nonzero boundary condition is presented. Different from N$N$‐dark soliton solutions which locate in the straight lines and experience position shift after the interaction, the double‐pole solutions diverge from each other logarithmically and experience no position shift after the interaction.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/zamm.202200417</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-5608-7956</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-2267 |
ispartof | Zeitschrift für angewandte Mathematik und Mechanik, 2024-07, Vol.104 (7), p.n/a |
issn | 0044-2267 1521-4001 |
language | eng |
recordid | cdi_proquest_journals_3076787972 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Boundary conditions Defocusing Ferromagnetism Inverse scattering Optical fibers Poles Reflectance Solitary waves Straight lines |
title | Riemann–Hilbert approach, dark solitons and double‐pole solutions for Lakshmanan–Porsezian–Daniel equation in an optical fiber, a ferromagnetic spin or a protein |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A07%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Riemann%E2%80%93Hilbert%20approach,%20dark%20solitons%20and%20double%E2%80%90pole%20solutions%20for%20Lakshmanan%E2%80%93Porsezian%E2%80%93Daniel%20equation%C2%A0in%20an%20optical%20fiber,%20a%20ferromagnetic%20spin%20or%20a%20protein&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Mechanik&rft.au=Chen,%20Su%E2%80%90Su&rft.date=2024-07&rft.volume=104&rft.issue=7&rft.epage=n/a&rft.issn=0044-2267&rft.eissn=1521-4001&rft_id=info:doi/10.1002/zamm.202200417&rft_dat=%3Cproquest_cross%3E3076787972%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3177-42003368ad7a0943d4d142f0f137a867d9276eacddbadda63167b8dec10bdacf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3076787972&rft_id=info:pmid/&rfr_iscdi=true |