Loading…

A physics‐informed machine learning prediction for thermal analysis in a convective‐radiative concave fin with periodic boundary conditions

The present research is focused on the inspection of unsteady heat dissipation through a radiative‐convective concave profiled fin along with the periodic boundary conditions. Additionally, the long‐short‐term memory machine learning (LSTM‐ML) approach is used in this study to examine the periodic f...

Full description

Saved in:
Bibliographic Details
Published in:Zeitschrift für angewandte Mathematik und Mechanik 2024-07, Vol.104 (7), p.n/a
Main Authors: Kumar, Chandan, Srilatha, Pudhari, Karthik, Kalachar, Somashekar, Channaiah, Nagaraja, Kallur Venkat, Varun Kumar, Ravikumar Shashikala, Shah, Nehad Ali
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3172-209d1a58c65ffc528b5ff917a8bfafa26445e5e1d9d5d3d8d84288879b8ee4a73
cites cdi_FETCH-LOGICAL-c3172-209d1a58c65ffc528b5ff917a8bfafa26445e5e1d9d5d3d8d84288879b8ee4a73
container_end_page n/a
container_issue 7
container_start_page
container_title Zeitschrift für angewandte Mathematik und Mechanik
container_volume 104
creator Kumar, Chandan
Srilatha, Pudhari
Karthik, Kalachar
Somashekar, Channaiah
Nagaraja, Kallur Venkat
Varun Kumar, Ravikumar Shashikala
Shah, Nehad Ali
description The present research is focused on the inspection of unsteady heat dissipation through a radiative‐convective concave profiled fin along with the periodic boundary conditions. Additionally, the long‐short‐term memory machine learning (LSTM‐ML) approach is used in this study to examine the periodic fluctuation in the temperature of the fin. The current research is devoted to solving the highly non‐linear equation using a physics‐informed neural network (PINN) approach. Using the proper dimensionless terms, the associated fin problem is transformed into a non‐dimensional system, and the resulting partial differential equation (PDE) is then numerically solved using the finite difference method (FDM). Using the data‐driven LSTM‐ML technique, the time‐dependent periodic heat transmission in the concave fin is also examined. The impact of various factors on the temperature profile of the concave extended surface is explained, and the results are visually displayed. The temperature distribution in the concave fin diminishes as the convection‐conduction parameter and radiation‐conduction parameter rise. As the amplitude and thermal conductivity parameters improve, so does the temperature of the concave fin. Furthermore, it is demonstrated that although LSTM‐ML and PINN closely matched the FDM findings during the training domain, only PINN with designed characteristics has the potential to predict accurately beyond the trained region by capturing the physics of the problem.
doi_str_mv 10.1002/zamm.202300712
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3076790353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3076790353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3172-209d1a58c65ffc528b5ff917a8bfafa26445e5e1d9d5d3d8d84288879b8ee4a73</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhS0EEqWwMltiTrGdP2esKv6kViywsFg3tkNcJU6w06Iy8QbwjDwJjopgZDpXV985uvcgdE7JjBLCLt-gbWeMsJiQnLIDNKEpo1FCCD1EE0KSJGIsy4_RifdrErYFjSfoY477eueN9F_vn8ZWnWu1wi3I2liNGw3OGvuMe6eVkYPpLA4IHmrtWmgwWGiC2WNjMWDZ2a0O0FaHLAfKwDiPawlBqwC9mqHGvXamC3G47DZWgduNiDJjuj9FRxU0Xp_96BQ9Xl89LG6j5f3N3WK-jGRMcxYxUigKKZdZWlUyZbwMWtAceFlBBSxLklSnmqpCpSpWXPGEcc7zouRaJ5DHU3Sxz-1d97LRfhDrbuPCO17EJM_ygsRpHKjZnpKu897pSvTOtOFiQYkYSxdj6eK39GAo9oZX0-jdP7R4mq9Wf95vH2SMFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3076790353</pqid></control><display><type>article</type><title>A physics‐informed machine learning prediction for thermal analysis in a convective‐radiative concave fin with periodic boundary conditions</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Kumar, Chandan ; Srilatha, Pudhari ; Karthik, Kalachar ; Somashekar, Channaiah ; Nagaraja, Kallur Venkat ; Varun Kumar, Ravikumar Shashikala ; Shah, Nehad Ali</creator><creatorcontrib>Kumar, Chandan ; Srilatha, Pudhari ; Karthik, Kalachar ; Somashekar, Channaiah ; Nagaraja, Kallur Venkat ; Varun Kumar, Ravikumar Shashikala ; Shah, Nehad Ali</creatorcontrib><description>The present research is focused on the inspection of unsteady heat dissipation through a radiative‐convective concave profiled fin along with the periodic boundary conditions. Additionally, the long‐short‐term memory machine learning (LSTM‐ML) approach is used in this study to examine the periodic fluctuation in the temperature of the fin. The current research is devoted to solving the highly non‐linear equation using a physics‐informed neural network (PINN) approach. Using the proper dimensionless terms, the associated fin problem is transformed into a non‐dimensional system, and the resulting partial differential equation (PDE) is then numerically solved using the finite difference method (FDM). Using the data‐driven LSTM‐ML technique, the time‐dependent periodic heat transmission in the concave fin is also examined. The impact of various factors on the temperature profile of the concave extended surface is explained, and the results are visually displayed. The temperature distribution in the concave fin diminishes as the convection‐conduction parameter and radiation‐conduction parameter rise. As the amplitude and thermal conductivity parameters improve, so does the temperature of the concave fin. Furthermore, it is demonstrated that although LSTM‐ML and PINN closely matched the FDM findings during the training domain, only PINN with designed characteristics has the potential to predict accurately beyond the trained region by capturing the physics of the problem.</description><identifier>ISSN: 0044-2267</identifier><identifier>EISSN: 1521-4001</identifier><identifier>DOI: 10.1002/zamm.202300712</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Boundary conditions ; Finite difference method ; Heat transfer ; Heat transmission ; Linear equations ; Machine learning ; Neural networks ; Parameters ; Partial differential equations ; Periodic variations ; Physics ; Temperature distribution ; Temperature profiles ; Thermal analysis ; Thermal conductivity</subject><ispartof>Zeitschrift für angewandte Mathematik und Mechanik, 2024-07, Vol.104 (7), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3172-209d1a58c65ffc528b5ff917a8bfafa26445e5e1d9d5d3d8d84288879b8ee4a73</citedby><cites>FETCH-LOGICAL-c3172-209d1a58c65ffc528b5ff917a8bfafa26445e5e1d9d5d3d8d84288879b8ee4a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kumar, Chandan</creatorcontrib><creatorcontrib>Srilatha, Pudhari</creatorcontrib><creatorcontrib>Karthik, Kalachar</creatorcontrib><creatorcontrib>Somashekar, Channaiah</creatorcontrib><creatorcontrib>Nagaraja, Kallur Venkat</creatorcontrib><creatorcontrib>Varun Kumar, Ravikumar Shashikala</creatorcontrib><creatorcontrib>Shah, Nehad Ali</creatorcontrib><title>A physics‐informed machine learning prediction for thermal analysis in a convective‐radiative concave fin with periodic boundary conditions</title><title>Zeitschrift für angewandte Mathematik und Mechanik</title><description>The present research is focused on the inspection of unsteady heat dissipation through a radiative‐convective concave profiled fin along with the periodic boundary conditions. Additionally, the long‐short‐term memory machine learning (LSTM‐ML) approach is used in this study to examine the periodic fluctuation in the temperature of the fin. The current research is devoted to solving the highly non‐linear equation using a physics‐informed neural network (PINN) approach. Using the proper dimensionless terms, the associated fin problem is transformed into a non‐dimensional system, and the resulting partial differential equation (PDE) is then numerically solved using the finite difference method (FDM). Using the data‐driven LSTM‐ML technique, the time‐dependent periodic heat transmission in the concave fin is also examined. The impact of various factors on the temperature profile of the concave extended surface is explained, and the results are visually displayed. The temperature distribution in the concave fin diminishes as the convection‐conduction parameter and radiation‐conduction parameter rise. As the amplitude and thermal conductivity parameters improve, so does the temperature of the concave fin. Furthermore, it is demonstrated that although LSTM‐ML and PINN closely matched the FDM findings during the training domain, only PINN with designed characteristics has the potential to predict accurately beyond the trained region by capturing the physics of the problem.</description><subject>Boundary conditions</subject><subject>Finite difference method</subject><subject>Heat transfer</subject><subject>Heat transmission</subject><subject>Linear equations</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Partial differential equations</subject><subject>Periodic variations</subject><subject>Physics</subject><subject>Temperature distribution</subject><subject>Temperature profiles</subject><subject>Thermal analysis</subject><subject>Thermal conductivity</subject><issn>0044-2267</issn><issn>1521-4001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAUhS0EEqWwMltiTrGdP2esKv6kViywsFg3tkNcJU6w06Iy8QbwjDwJjopgZDpXV985uvcgdE7JjBLCLt-gbWeMsJiQnLIDNKEpo1FCCD1EE0KSJGIsy4_RifdrErYFjSfoY477eueN9F_vn8ZWnWu1wi3I2liNGw3OGvuMe6eVkYPpLA4IHmrtWmgwWGiC2WNjMWDZ2a0O0FaHLAfKwDiPawlBqwC9mqHGvXamC3G47DZWgduNiDJjuj9FRxU0Xp_96BQ9Xl89LG6j5f3N3WK-jGRMcxYxUigKKZdZWlUyZbwMWtAceFlBBSxLklSnmqpCpSpWXPGEcc7zouRaJ5DHU3Sxz-1d97LRfhDrbuPCO17EJM_ygsRpHKjZnpKu897pSvTOtOFiQYkYSxdj6eK39GAo9oZX0-jdP7R4mq9Wf95vH2SMFQ</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Kumar, Chandan</creator><creator>Srilatha, Pudhari</creator><creator>Karthik, Kalachar</creator><creator>Somashekar, Channaiah</creator><creator>Nagaraja, Kallur Venkat</creator><creator>Varun Kumar, Ravikumar Shashikala</creator><creator>Shah, Nehad Ali</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202407</creationdate><title>A physics‐informed machine learning prediction for thermal analysis in a convective‐radiative concave fin with periodic boundary conditions</title><author>Kumar, Chandan ; Srilatha, Pudhari ; Karthik, Kalachar ; Somashekar, Channaiah ; Nagaraja, Kallur Venkat ; Varun Kumar, Ravikumar Shashikala ; Shah, Nehad Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3172-209d1a58c65ffc528b5ff917a8bfafa26445e5e1d9d5d3d8d84288879b8ee4a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary conditions</topic><topic>Finite difference method</topic><topic>Heat transfer</topic><topic>Heat transmission</topic><topic>Linear equations</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Partial differential equations</topic><topic>Periodic variations</topic><topic>Physics</topic><topic>Temperature distribution</topic><topic>Temperature profiles</topic><topic>Thermal analysis</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Chandan</creatorcontrib><creatorcontrib>Srilatha, Pudhari</creatorcontrib><creatorcontrib>Karthik, Kalachar</creatorcontrib><creatorcontrib>Somashekar, Channaiah</creatorcontrib><creatorcontrib>Nagaraja, Kallur Venkat</creatorcontrib><creatorcontrib>Varun Kumar, Ravikumar Shashikala</creatorcontrib><creatorcontrib>Shah, Nehad Ali</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Chandan</au><au>Srilatha, Pudhari</au><au>Karthik, Kalachar</au><au>Somashekar, Channaiah</au><au>Nagaraja, Kallur Venkat</au><au>Varun Kumar, Ravikumar Shashikala</au><au>Shah, Nehad Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A physics‐informed machine learning prediction for thermal analysis in a convective‐radiative concave fin with periodic boundary conditions</atitle><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle><date>2024-07</date><risdate>2024</risdate><volume>104</volume><issue>7</issue><epage>n/a</epage><issn>0044-2267</issn><eissn>1521-4001</eissn><abstract>The present research is focused on the inspection of unsteady heat dissipation through a radiative‐convective concave profiled fin along with the periodic boundary conditions. Additionally, the long‐short‐term memory machine learning (LSTM‐ML) approach is used in this study to examine the periodic fluctuation in the temperature of the fin. The current research is devoted to solving the highly non‐linear equation using a physics‐informed neural network (PINN) approach. Using the proper dimensionless terms, the associated fin problem is transformed into a non‐dimensional system, and the resulting partial differential equation (PDE) is then numerically solved using the finite difference method (FDM). Using the data‐driven LSTM‐ML technique, the time‐dependent periodic heat transmission in the concave fin is also examined. The impact of various factors on the temperature profile of the concave extended surface is explained, and the results are visually displayed. The temperature distribution in the concave fin diminishes as the convection‐conduction parameter and radiation‐conduction parameter rise. As the amplitude and thermal conductivity parameters improve, so does the temperature of the concave fin. Furthermore, it is demonstrated that although LSTM‐ML and PINN closely matched the FDM findings during the training domain, only PINN with designed characteristics has the potential to predict accurately beyond the trained region by capturing the physics of the problem.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/zamm.202300712</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0044-2267
ispartof Zeitschrift für angewandte Mathematik und Mechanik, 2024-07, Vol.104 (7), p.n/a
issn 0044-2267
1521-4001
language eng
recordid cdi_proquest_journals_3076790353
source Wiley-Blackwell Read & Publish Collection
subjects Boundary conditions
Finite difference method
Heat transfer
Heat transmission
Linear equations
Machine learning
Neural networks
Parameters
Partial differential equations
Periodic variations
Physics
Temperature distribution
Temperature profiles
Thermal analysis
Thermal conductivity
title A physics‐informed machine learning prediction for thermal analysis in a convective‐radiative concave fin with periodic boundary conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A30%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20physics%E2%80%90informed%20machine%20learning%20prediction%20for%20thermal%20analysis%20in%20a%20convective%E2%80%90radiative%20concave%20fin%20with%20periodic%20boundary%20conditions&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Mechanik&rft.au=Kumar,%20Chandan&rft.date=2024-07&rft.volume=104&rft.issue=7&rft.epage=n/a&rft.issn=0044-2267&rft.eissn=1521-4001&rft_id=info:doi/10.1002/zamm.202300712&rft_dat=%3Cproquest_cross%3E3076790353%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3172-209d1a58c65ffc528b5ff917a8bfafa26445e5e1d9d5d3d8d84288879b8ee4a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3076790353&rft_id=info:pmid/&rfr_iscdi=true